VCPD615 - Nuclear Piping Systems ASME BPV Code, Section III and ASME B31.1: Design, Integrity-Operability Assessment, and Repairs (Virtual Classroom) has been added to your cart.
Courses

Nuclear Piping Systems ASME BPV Code, Section III and ASME B31.1: Design, Integrity-Operability Assessment, and Repairs (Virtual Classroom)

Apply ASME Section III, Division 1, Subsections NB/NC/ND to the design, analysis, and qualification of nuclear power plant piping systems.

This Standard was last reviewed and reaffirmed in {{activeProduct.ReaffirmationYear}}. Therefore this version remains in effect.

Nuclear Piping Systems ASME BPV Code, Section III and ASME B31.1: Design, Integrity-Operability Assessment, and Repairs (Virtual Classroom)
{{ onlyLocationDate }}
{{ errorMessage }}

Final invoices will include applicable sales and use tax.

Print or Share
Description

Package Items
Quantity Item
{{ package.Quantity }} {{ package.Title }}

Enroll now to save 50%

$2,375 $1,195

Schedule: This course commences at 9:30 AM and ends at 1:30 PM Eastern each day.

This course provides information and instruction on the design, analysis, and qualification of nuclear power plant piping systems that are consistent with the ASME BPV Code, Section III, Division 1, Subsections NB/NC/ND, as well as the parallel requirements of ASME B31.1 for nuclear power plants. The methods and criteria described throughout the course, apply to new systems, as well as modifications or repairs to existing systems.

The course also addresses the integrity assessment of degraded nuclear piping systems (wall thinning and crack damage) using the methods and criteria of ASME BPV Code, XI, operability assessment per NRC Inspection Manual, and piping repairs per ASME BPV Code, XI and ASME PCC-2.

The course covers (a) the code and regulatory requirements, (b) the technical and historical basis of the requirements, and (c) best industry practices for the correct and cost-effective design, analysis, and integrity assessment of nuclear piping systems.

You Will Learn To

  • Describe Class 1, Class 2/3, and B31.1 nuclear piping design requirements
  • Explain the differences between Class 1, Class 2/3, and B31.1 Piping Systems
  • Describe the NRC regulatory requirements related to ASME III and B31.1 Piping Systems
  • Evaluate normal operating loads (pressure, weight, thermal expansion)
  • Evaluate postulated design loads (seismic, waterhammer, vibration, pipe break, etc.)
  • Determine how to make the correct and cost-effective decisions in the design and modification of nuclear piping
  • Evaluate corroded (wall-thinning) nuclear piping
  • Evaluate crack-like flaws in nuclear piping
  • Assess operability of piping systems for abnormal conditions

Who Should Attend
This course is intended for engineers involved in the design, analysis, qualification, troubleshooting and operability determination of ASME BPV Code, Safety Class 1, 2 & 3 piping systems, and ASME B31.1 for nuclear power plants.

Course Materials (included in the price of the course)
Downloadable course notes via ASME’s Learning Platform for 90 days
Access to a digital copy of ASME PCC-2 Repair of Pressure Equipmentand Piping Standard during the course

Learn more about ASME's virtual classroom!

Buying for a team? Get ASME Corporate Training.

Set up a customized session of this course for your workforce. Contact learningsolutions@asme.org to learn more about group rates.

Expand
Outline

Topics Covered

  • Overview of ASME III requirements for piping systems
  • Overview of B31.1 requirements for nuclear plant piping systems
  • Historical perspective and key changes to codes of record 1960’s-current
  • Overview of regulatory requirements
  • Design loads and load combinations
  • Design qualification requirements
  • Pressure design
  • Sustained loads design
  • Flexibility analysis and fatigue
  • Pipe stress modeling guidance
  • Dynamic loads in nuclear plant piping
  • Seismic OBE and SSE
  • Hydraulic transient loads
  • Flow-induced vibration
  • Pipe break
  • Wind and tornado loads
  • Primary stress equations Class 2-3 and B31.1
  • Class 1 equations and difference with Class 2-3
  • Class 1 fatigue, life extension, and environmental fatigue effects
  • Operability assessment in accordance with NRC Inspection Manual
  • Case study accidental over-pressure
  • Case study locked snubber
  • Corrosion-erosion assessment using Section XI code cases
  • Assessment of crack-like flaws, fracture mechanics using Section XI Ap.H
  • Repair options for safety-related piping systems per ASME XI and NRC
  • Repair options for non-safety-related piping systems per
Expand
About the Instructor

George Antaki, P.E., Becht Engineering, is a Fellow of ASME, with over 40 years of experience in pressure equipment. He is an ASME Fellow, internationally recognized for his expertise in design, analysis, and fitness-for-service evaluation of pressure equipment and piping systems. He is the Chairman of ASME B31 Mechanical Design Committee, Chairman of ASME III Working Group Piping Design, member of the ASME III Subgroup Component Design, ASME QME, and ASME Operation and Maintenance Subgroup Piping. He is the author of three textbooks on the subject of pressure equipment design and integrity evaluation, including, Fitness-for-Service for Piping, Vessels, and Tanks.

Mr. Antaki earned his degree in Nuclear Engineering from the University of Liege, Belgium in 1975, and his Master’s degree in Mechanical Engineering from Carnegie Mellon University in 1985.

Expand

Get papers online in the ASME Digital Collection

Find eBooks, journals, and proceedings papers
Subscribe to RSS feeds
Sign up for content alerts
View calls for papers

You are now leaving ASME.org