The American Society of Mechanical Engineers designates the first Kingsbury thrust bearing at Holtwood Hydroelectric Station as an International Historic Mechanical Engineering Landmark on June 27, 1987.
The Kingsbury bearing at Holtwood
There's an invention that's been working for 75 years along the Susquehanna River in Lancaster County, Pa., with negligible wear, while withstanding a force of more than 220 tons.

The Susquehanna Section of the American Society of Mechanical Engineers dedicated that invention — a 48-inch-diameter thrust bearing — on Saturday, June 27, 1987, as its 23rd International Historic Mechanical Engineering Landmark.

The bearing is the brainchild of the late professor Albert Kingsbury, an engineering genius who personally supervised its installation in the 10,000-horsepower Unit 5 of the 10-unit Holtwood Hydroelectric Station, June 22 through 27, 1912. Holtwood today is owned and operated by Pennsylvania Power & Light Co. It was built and operated until 1955 by Pennsylvania Water & Power Co.

All bearings in rotating machinery need to overcome the effects of friction between revolving parts and stationary parts. A thrust bearing specifically overcomes the friction created when a shaft exerts a force in a direction parallel to its axis of rotation.

Helicopter rotors and airplane or boat propellers, for instance, need thrust bearings on their shafts. So do hydroelectric turbine-generator units.

Until Kingsbury came onto the scene, units like Holtwood’s represented the upper size limit of hydroelectric design. The rotating elements at Holtwood Unit 5 have a combined weight of more than 180 tons, and the downward force of water passing through the turbine adds another 45 tons.

Roller thrust bearings once used in such installations rarely lasted more than two months before needing repair or replacement.

Then Kingsbury came along with the deceptively simple idea that instead of roller or ball bearings, a thin film of oil could support the massive weight — and practically eliminate mechanical wear in the bargain.

The principle of the discovery — in Kingsbury’s own words — was this:

In reading (a) paper dealing with flat surfaces, it occurred to me that here was a possible solution to the troublesome problem of thrust bearings ... if an extensive flat surface rubbed over a flat surface slightly inclined thereto, oil being present, there would be a pressure distributed about as sketched...

Former Holtwood superintendent W. Roger Small Jr. checks the glass inspection port on the Unit 5 thrust deck that enables operators to view the oil-bathed bearing during operation.
On the 25th anniversary of its installation, Kingsbury (right) returned to Holtwood for a look at the Unit 5 thrust bearing. With him is Frederick A. Allner, who eventually became a Pennsylvania Water & Power Co vice president. The arc-shaped piece in front of Allner is one of the bearing shoes that had been removed for the occasion.

Kingsbury’s design could support 100 times the load of the previously used roller bearings.

The top half of his bearing design is a flat, cast-iron ring, called a “runner.” The runner rests on six flat shoes, shaped like wedges of pie to match the shape of the ring.

The entire bearing is bathed in 570 gallons of oil. Each of the shoes is pivot-mounted so that it can rock a bit. How this happens is shown in the diagram, copied from Kingsbury’s original sketch in which he showed the pressure distribution in the offset shoes.

The rotating motion of the cast-iron runner squeezes oil between it and the shoes, and the oil actually supports the weight, with no physical contact between the runner and the shoes.

As a kind of engineering “bonus,” the design is such that the faster a unit runs, the more weight the bearing is capable of carrying.

Kingsbury returned to Holtwood once — to mark the 25th anniversary of the installation of bearing No. 1 in the plant’s Unit 5. Amid all the pomp and ceremony of the occasion, he took time out to smear his initials in the oil film of a Kingsbury bearing shoe that the owners had on display.

Incidentally, the contract between PW&P and Kingsbury, which agreement the professor described as “a stiff one,” was for $2,650 for the construction and installation of that first bearing.

At Holtwood today, a model of the bearing is attached to Unit 5, along with a plaque reading:

“The first Kingsbury thrust bearing ever installed on a hydro-electric generation unit was put into service in this machine on June 22, 1912. It carries a weight of 220 tons.

“When the generator was rebuilt for 60-cycle service in 1950, the original Kingsbury bearing was retained, as it was in perfect condition.

“Not a single part has ever been replaced.”

The Kingsbury company

Albert Kingsbury was born in Morris, Ill., in 1863, the son of a Quaker mother and Presbyterian father. His lineage went back to English immigrants who landed in Massachusetts in the 17th century.

A well-rounded individual with a sense of humor, Kingsbury was equally at ease working with machinery, singing, playing the flute or reading in Spanish, Italian, Greek, French, German or Danish.

Throughout his early life, there remained a thread of interest in coefficients of friction that appeared to have begun when he undertook the testing of bearing metals while studying mechanical engineering at Cornell University.

Kingsbury took over the testing of half-journal bearings at Cornell in research undertaken by the Pennsylvania Railroad Co. After carefully scraping and refitting all the test bearings there, he discovered that they exhibited identical characteristics and showed no detectable wear.

He was to remain intrigued by the mysteries of friction and the properties of lubricants for the rest of his life, whether teaching at New Hampshire College (Durham) after his graduation, working in private industry or teaching again at Worcester Polytechnic Institute.

The inspiration for Kingsbury’s tilting-pad bearing came when he read an 1886 paper by Osborne Reynolds on properties of fluid-film-lubricated bearings. Kingsbury built a successful thrust bearing in 1898, while at New Hampshire College.

Eventually lured away from the academic life by his desire to work more closely with lubrication problems, Kingsbury nonetheless was awarded two honorary doctorates in recognition of his contributions to the knowledge of tribology — the study of friction and ways to overcome its effects.

He applied for a U.S. patent in 1907, and eventually was awarded Patent No. 947,242 in 1910.

It was when Kingsbury was working at the East Pittsburgh works of the Westinghouse Electric and Manufacturing Co. that this daringly innovative engineer chanced upon a daringly innovative company — Pennsylvania Water & Power Co. — that was in need of a bearing of the sort Kingsbury wanted to demonstrate on a commercial scale.

PW&P was a struggling company between 1910 — when Holtwood went into operation — and 1914, when the utility was able to turn around its financial fortunes.

Kingsbury, for his part, took the money from a matured insurance policy and used it to pay Westinghouse for building the first thrust bearing that was installed at Holtwood.
Both he and PW&P were betting their futures on the success of his bearing in replacing the roller bearings that used to wear out in a matter of months at Holtwood and similar hydroelectric installations.

The first time it was installed, it looked like an overheated failure. But Kingsbury took it back to East Pittsburgh and applied that same careful scraping technique whose results puzzled him at Cornell. Within five days, the bearing was installed and running without problems.

After three months, the bearing was taken apart and found to be in perfect condition. PW&P bought more, and eventually put them on all 10 Holtwood hydroelectric units. Calculations after that first inspection showed that the bearing should last 330 years before the shoes’ bearing surface would be half worn away.

After four years and another inspection, recalculation indicated a more than 1,320-year life span.

When the unit was again inspected in 1969, the bearing was still in nearly new condition.

Kingsbury’s bearing made possible the design of much larger hydroelectric units, such as those of the Tennessee Valley Authority and Bonneville Power Authority and at the Hoover and Grand Coulee dams.

In addition, Kingsbury bearings have been used extensively in marine propulsion — for the propeller shafts of large ships and even nuclear-powered submarines. The first such application was on U.S. Navy ships in 1917.

**History of Holtwood Hydro**

The Holtwood Hydroelectric Station was built between 1905 and 1910 by the Pennsylvania Water & Power Co. PW&P merged with Pennsylvania Power & Light Co., the plant’s present owner and operator, in 1955.

The Kingsbury thrust bearing is far from the only technology pioneered at Holtwood.

A hydraulic laboratory existed there for many years, and in it were tested not only the runner (turbine blade) design for the Safe Harbor Hydroelectric Development, eight miles upriver from Holtwood, but also runners for many large hydroelectric developments throughout the country, including Bonneville and Santee-Cooper.

Another interesting facet of “river technology” was the dredging and burning of anthracite culm, or “fines” (waste coal that washed into the river from the anthracite belt as far north as Luzerne and Lackawanna counties).

For years, commercial dredging was done in the Holtwood impoundment (Lake Aldred), and later in the Safe Harbor impoundment (Lake Clarke). Indeed, Holtwood Steam Electric Station was built to burn river coal, and did so until cleaner coal-mining and processing methods shut off the flow of available “fines” and environmental regulations in 1972 made it impractical to continue dredging.

Other technological pioneering at Holtwood included PW&P’s testing of lightning-protection systems and water-deluge fire-fighting systems to protect large transformers. The systems protecting transformers at all PP&L plants today are direct descendants of the prototypes developed at Holtwood.

Notwithstanding the embryonic state of large-project engineering and construction techniques when Holtwood was built, its massive concrete dam has withstood all major floods on the Susquehanna, including the devastating flood of 1936, the assault of Tropical Storm Agnes in 1972 and a massive ice jam in 1978.

Thanks to PP&L’s ongoing “Extended Life” program for its generating stations, Holtwood is expected to have a useful life well into the next century, and far longer than might have been projected for it in 1910.

At the time of the Kingsbury thrust bearing’s dedication as an International Historic Mechanical Engineering Landmark, a complete rebuild of Holtwood’s hydroelectric Unit 8 was in progress. Other units will be rebuilt on a continuing schedule.

With that kind of maintenance and with original equipment of the quality of the Kingsbury bearing, it’s possible that Holtwood Hydroelectric Station may never “wear out.”

![Image of Holtwood Hydroelectric Station](image-url)

*Seen here from the York County side of the river, Holtwood Hydroelectric Station has been a familiar landmark along the Susquehanna for more than 76 years.*
The ASME’s History and Heritage Program

The ASME History and Heritage program began in September 1971. To implement and achieve its goals, ASME formed a History and Heritage Committee, composed of mechanical engineers, historians of technology, and the curator of Mechanical and Civil Engineering at the Smithsonian Institution. The committee provides a public service by examining, noting, recording and acknowledging mechanical engineering achievements of particular significance. For further information, please contact the Public Information Department, American Society of Mechanical Engineers, 354 East 47th Street, New York, N.Y. 10017, (212) 705-7740.

About the Landmarks

The Kingsbury Bearing is the 23rd International Historic Mechanical Engineering Landmark to be designated. Additionally, since the ASME National Historic Mechanical Engineering Program began in 1971, 87 National Historic Mechanical Engineering Landmarks, one International Mechanical Engineering Heritage Site, one International Mechanical Engineering Heritage Collection, and two National Mechanical Engineering Heritage Sites have been recognized. Each reflects its influence on society in its immediate locale, nationwide or throughout the world.

According to David P. Kitlan, the ASME Susquehanna Section’s History & Heritage Committee chairman, this region of Pennsylvania is particularly rich in examples of engineering innovation and progress, and the section has sponsored more National Historic Mechanical Engineering Landmarks than any other in the country.

The Kingsbury bearing, however, is the section’s first International ASME Historic Mechanical Engineering Landmark, so designated because of the global consequences of Kingsbury’s invention and its applications.

Other engineering accomplishments already recognized as “landmarks” in Pennsylvania include: The Pennsylvania Railroad “GG-1” electric Locomotive No. 4800 at Strasburg; the Worthington cross-compound steam pumping engine at York; the Kaplan hydroelectric turbine at York Haven Hydroelectric Plant, York Haven; the Cornwall Iron Furnace in Lebanon County; the Fairmount Water Works in Philadelphia; the steam engines of the USS Olympia, berthed in Philadelphia; the Monongahela and Duquesne inclines at Pittsburgh; and the Drake oil well at Titusville.

An ASME landmark represents a progressive step in the evolution of mechanical engineering. Site designations note an event or development of clear historical importance to mechanical engineers. Collections mark the contributions of a number of objects with special significance to the historical development of mechanical engineering.

The ASME Historical Mechanical Engineering Program illuminates our technological heritage and serves to encourage the preservation of the physical remains of historically important works. It provides an annotated roster for engineers, students, educators, historians and travelers. It helps establish persistent reminders of where we have been and where we are going along the divergent paths of discovery.

Text of the Kingsbury Plaque at Holtwood

(Editors note: The ASME plans to erect a plaque for the Michell bearing at another location. That plaque will repeat the last paragraph from the Kingsbury plaque, but with Kingsbury’s name substituted for Michell’s.)

INTERNATIONAL HISTORIC MECHANICAL ENGINEERING LANDMARK
KINGSBURY THRUST BEARING
HOLTWOOD UNIT #5
HOLTWOOD, PA.
1912

THE LOAD IN A KINGSBURY BEARING IS CARRIED BY A WEDGE-SHAPED OIL FILM FORMED BETWEEN THE SHAFT THRUST-COLLAR AND A SERIES OF STATIONARY PIVOTED PADS OR SEGMENTS. THIS RESULTS IN AN EXTREMELY LOW COEFFICIENT OF FRICTION AND NEGLIGIBLE BEARING WEAR.

ALBERT KINGSBURY (1863-1944) DEVELOPED THE PRINCIPLE IN THE COURSE OF BEARING AND LUBRICATION INVESTIGATIONS COMMENCING IN 1888 WHILE A STUDENT. HIS FIRST EXPERIMENTAL BEARING WAS TESTED IN 1904 AND HE FILED FOR A PATENT IN 1907 — GRANTED IN 1910.

THE FIRST KINGSBURY BEARING IN HYDROELECTRIC SERVICE — ONE OF ITS MAJOR APPLICATIONS — WAS INSTALLED HERE IN 1912. IT REMAINS IN FULL USE TODAY. KINGSBURY THRUST AND JOURNAL BEARINGS HAVE BEEN APPLIED TO LARGE MACHINERY OF ALL TYPES THROUGHOUT THE WORLD.

IN ONE OF THOSE COINCIDENCES WITH WHICH THE HISTORY OF TECHNOLOGY IS STREWN, AUSTRALIAN A. G. M. MICHELL SIMULTANEOUSLY AND INDEPENDENTLY INVENTED A BEARING ON THE SAME PRINCIPLE, THE TYPE BEING KNOWN IN MANY PARTS OF THE WORLD BY HIS NAME.

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS — 1987
History and description of PP&L

Pennsylvania Power & Light Co., incorporated June 4, 1920, now serves 2.5 million people in all or parts of 29 Central Eastern Pennsylvania counties.

Thomas A. Edison himself established several of the companies that were precursors of PP&L, and he built the world’s first three-wire electric supply system in Sunbury. The first electrically lighted hotel and church both were located within what is now PP&L’s service area.

Ideally located near a majority of the mid-Atlantic states’ population, PP&L contributes to the economic health and growth of the area not only by providing dependable and economical electricity, but by an aggressive economic development program to nurture existing companies and encourage others to locate in its territory.

Holtwood Hydroelectric Station, whose first unit was completed in 1910, before PP&L was formed, is the oldest of PP&L’s generating facilities. The Holtwood dam was, for a short time, the longest in the nation, and the generating plant was the largest hydro station as well.

Also on the site is the Holtwood Steam Electric Station, location of the nation’s largest anthracite-burning boiler.

Other PP&L hydro facilities are the wholly owned Wallenpaupack Hydroelectric Station, completed in 1926, and the Safe Harbor Hydroelectric Development (one-third interest), which dates back to 1931.

The Sunbury Steam Electric Station, which went on-line in 1949, is PP&L’s other anthracite-burning facility. Its four anthracite-fired boilers make it the largest anthracite-burning generating plant in the nation.

The company has four plants where bituminous coal is burned: Sunbury; Martins Creek Steam Electric Station — on line in 1954; Brunner Island Steam Electric Station — 1961; and Montour Steam Electric Station — 1972.

The Martins Creek station also is the location of two heavy-oil-burning units, dating to 1975.

PP&L’s newest large plant is the nuclear-powered Susquehanna Steam Electric Station, with an in-service date of 1983.

In addition, PP&L owns part interests in the Keystone and Conemaugh plants in western Pennsylvania.

More than 25 light-oil-fueled combustion turbines are located throughout the PP&L system to provide additional peak-load power when needed.

All PP&L’s plants combined have a capacity of more than 8.8 million kilowatts.

The ASME

Formed in 1880, the American Society of Mechanical Engineers is a professional society dedicated to the maintenance of high engineering standards and to education of the public in matters relating to engineering.

Acknowledgments

The American Society of Mechanical Engineers
Richard Rosenberg, President
Richard A. Hirsch, Vice President, Region III
Michael R. C. Grandia, History and Heritage Chairman, Region III
Dr. David L. Belden, Executive Director
The ASME Susquehanna Section
Theodore Taormina, Chairman
William J. Stewart, Secretary-Treasurer
David P. Kitlan, Chairman, History and Heritage Committee

The ASME National History and Heritage Committee
Dr. R. C. Dalzell, Chairman
Robert M. Vogel, Secretary
Dr. Robert B. Gaither
Dr. R. S. Hartenberg
Dr. J. Paul Hartman
Dr. Euan F. C. Somerscales
J. P. Van Overveen
Carron Garvin-Donohue, Staff liaison

Pennsylvania Power & Light Co.
Robert K. Campbell, President and Chief Executive Officer
John T. Kauffman, Executive Vice President-Operations
Thomas M. Crimmins Jr., Vice President-Power Production
Alden F. Wagner Jr., Superintendent of Plant-Holtwood Operations
N. Christian Porse, Supervisor-Hydro Generating Plant
James K. Witman, Power Production Engineer
Kingsbury, Inc.
Margaretta Clulow, Chairman
George Olsen, President
Richard S. Gregory, Vice President and General Manager
Andrew M. Mikula, Director of Marketing

References for Further Reading:
Mechanical Engineering magazine, December 1950, p. 957
PP&L Insights newsletter, June 24, 1983, p. 2
PP&L REPORTER magazine, October 1985, p. 10
Specifications for the first Kingsbury bearing at Holtwood:

- Designed for a 12,000-kilowatt water-wheel-driven generator
- Capable of supporting a 400,000-lb. load in continuous operation
- To operate between 94 and 116 RPM
- Lubrication to be a high grade oil known as "Renown Engine Oil"
- Intake temperature of oil to be not more than 40 degrees C
- Must be capable of 10 RPM for 15 minutes and also 20 RPM for one hour without undue heating of any part, providing oil is supplied at 17.5 gallons per minute
- Must be capable of operating at a runaway speed of 170 RPM for one hour, providing oil is supplied at 17.5 gallons per minute
- Must be capable of operating during one-half hour of interruption of oil circulation, providing no oil is lost from the casing - or for 20 minutes at an overspeed not to exceed 40 percent above 116 RPM
- Diameter: 48 inches
- Height: 24 inches
- Approximate weight: 2.5 tons