

MC132

Run-or-Repair Operability Decisions for Pressure Equipment and Piping Systems

Day 1

- Overview of ASME and NBIC codes and API standards related to run-or-repair operability decisions
- Logical structured approach to run-or-repair decisions
 - Damage mechanisms, failure modes, design vs. in-service margins
- Case Study 1: Corroded Tank
 - Inspection techniques, causes, run-or-repair decision, role of regulations and codes-standards, options for repairs
- Case Study 2: Corroded Piping System
 - Inspection techniques, causes, run-or-repair decision, role of regulations and codes-standards, options for repairs
- Case Study 3: Pitting Corrosion of Vessel
 - Inspection techniques, causes, run-or-repair decision, role of regulations and codes-standards, options for repairs
- Case Study 4: Fatigue Failure by Thermal Transient
 - Causes, role of regulations and codes-standards, options to prevent recurrence

Day 2

- Case Study 5: Flow-Induced Vibration in Piping
 - Observations, measurements, causes, run-or-repair decision, role of regulations and codes-standards, options for prevention, options for mitigation
- Case Study 6: Waterhammer
 - Observations, causes, run-or-repair decision, role of regulations and codes-standards, options for prevention, options for mitigation
- Case Study 7: Rupture of a Mechanical Joint
 - Inspection techniques, causes, run-or-repair decision, role of regulations and codes-standards, options for repairs
- Case Study 8: Leakage of Flange Joint
 - Causes, role of regulations and codes-standards, options for repair
- Case Study 9: Repairs

Updated August 2015

- Overview of ASME Post-Construction Code PCC-2 repair techniques:
 Welded repairs, and non-welded repairs: Selection, planning, specifying, and implementing the repair.
- Summary and Wrap-up