TABLE OF CONTENTS

About the Author ix
Preface x
Author’s Introduction xiii

Introduction

1

Chapter 1: Modeling Concepts

1.1 Mathematical Modeling 3
1.2 Talkative Models 5
1.3 Parameter/Model Requirements 7
1.4 Modeling Procedure 8
1.5 Closure 13

Part 1: Obstructive Sleep Apnea (OSA)

15

Chapter 2: Obstructive Sleep Apnea: Basic Principles and Current Treatments

2.1 Obstructive Sleep Apnea (OSA) 17
2.2 Diagnosis 19
2.3 Clinical Management and Treatment of OSA 20
2.3.1 Oral Devices 20
2.3.2 Surgical Treatment 21
2.3.3 CPAP Therapy 22
2.4 Closure 25
References 25
Chapter 3: Modeling of Continuous Positive Airway Pressure (CPAP) 29

3.1 Principles of Operation and System Components 29
3.2 Lumped Parameter Modeling of Components 30
 3.2.1 Air Delivery Unit 31
 3.2.2 Connecting Duct 31
 3.2.3 Reservoir 32
 3.2.4 Delivery Tube 33
 3.2.5 Mask 37
3.3 Simulink™ Model 39
3.4 Model Validation 41
3.5 Model Utility 44
 3.5.1 Compressor Analysis 45
 3.5.2 System Model Summary 47
 3.5.3 Simulation Results 49
3.6 Reversed Flow 54
 3.6.1 Transport Delay 56
 3.6.2 Effect of Flow Direction on Air Properties 56
 3.6.3 Exhaled Air Re-breathing 57
 3.6.4 Modeling Outcomes 59
3.7 Closure 63
References 63

Chapter 4: Modeling CPAP Humidification 65

4.1 The Need for Humidification 65
4.2 Types of Humidifiers 66
 4.2.1 Heated Humidifiers 67
 4.2.2 Passive Humidifiers 69
 4.2.3 Hygroscopic Condenser Humidifiers 69
4.3 Modeling with Humidification 71
4.4 Air Delivery Unit 72
4.5 Humidification Process 74
4.6 Mass Transfer 76
4.7 Humidifier Heat Transfer 79
 4.7.1 Heater Plate 79
 4.7.2 Water Reservoir 82
 4.7.3 Air Chamber 86

References 86
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 Heated Air Delivery Tube (HADT)</td>
</tr>
<tr>
<td>4.9 Interface</td>
</tr>
<tr>
<td>4.9.1 Flexible Tube</td>
</tr>
<tr>
<td>4.9.2 Nasal Mask</td>
</tr>
<tr>
<td>4.10 Simulink™ Model</td>
</tr>
<tr>
<td>4.11 Closure</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 5: Control Systems for CPAP 103

5.1 Available Control Schemes 103
5.2 Mathematical Modeling 106
5.2.1 Physical System 106
5.2.2 Pressure Transducer 107
5.2.3 Controller 108
5.2.4 Breathing 108
5.3 Simulink™ Model 108
5.3.1 Model Components 108
5.3.2 Open Loop Response 109
5.4 Appropriate Control Scheme 111
5.4.1 Time Constant Compensation 112
5.4.2 Time Delay Compensation 114
5.5 Controller Tuning 116
5.5.1 Reaction Curve Method 117
5.5.2 Continuous Cycling Method 117
5.6 Flow Sensors 119
5.7 Closure 122
References 123

Chapter 6: Mask Design 125

6.1 Basic Principles of Condensation and Carbon Dioxide 125
6.2 Mathematical Models to Determine Design Parameters 128
6.2.1 Fluid Modeling 128
6.2.2 Design Considerations of Pressure and Area Effects 131
6.3 Modeling Condensation 132
6.3.1 Condensation Physics 132
6.3.2 Calculation of condensation rate 133
6.4 Computational Fluid Dynamic (CFD) Simulations 137
6.5 Closure 139
References 139

Part 2: Respiratory Distress Syndrome (RDS) 141

Chapter 7: Basic Principles and Current Treatments 143
7.1 Respiratory Distress Syndrome (RDS) 143
 7.1.1 Pathophysiology 144
 7.1.2 Surfactant Therapies 145
 7.1.3 Traditional Ventilation Therapies 145
7.2 Ventilation Techniques using Pressure Oscillations 147
 7.2.1 High Frequency Ventilation (HFV) 147
 7.2.2 Biologically Variable Ventilation (BVV) 150
 7.2.3 Continuous Positive Airway Pressure (CPAP) with Pressure Oscillations 150
7.3 Closure 152
References 152

Chapter 8: Modeling of Bubble CPAP 155
8.1 Principles of Operation and System Components 155
 8.1.1 Humidification Chamber 156
 8.1.2 Single-Heated Breathing Circuit 156
 8.1.3 Pressure Manifold 157
 8.1.4 CPAP Generator 157
 8.1.5 Patient Interface - Nasal Tubing, Nasal Prongs, and Infant Bonnet 158
8.2 Lumped Parameter Modeling of Components 158
 8.2.1 Humidification Chamber 159
 8.2.2 The Inspiratory Line 160
 8.2.3 Patient Interface 162
 8.2.4 Expiratory Line 163
 8.2.5 The CPAP Generator 166
 8.2.6 Simplified Lung Model 166
 8.2.7 Complete System Simulation Model 167
Chapter 8: Model Validation

8.3 Model Validation

8.4 Model Utility

8.4.1 Effect of Design Parameters on Pressure Transmission

8.4.2 Interaction with Neonatal Lung

8.5 Closure

References 171

Chapter 9: Modeling Device Interaction with the Neonatal Lung

9.1 Respiratory System Structure and Function

9.1.1 Anatomy

9.1.2 Inspiration, Expiration, and the Respiratory Muscles

9.1.3 Respiratory Volumes and Capacities

9.2 Respiratory Mechanics

9.2.1 Airway Resistance

9.2.2 Compliance

9.2.3 Impedance

9.2.4 Alveolar Surface Tension

9.2.5 Work of Breath

9.3 Modeling Respiratory System Dynamics

9.3.1 Morphometric Models

9.3.2 Mechanical Models

9.3.3 Summary

9.4 Model Development

9.4.1 Model Assumptions

9.4.2 Model Derivation

9.4.3 Mass Flow Rate Expressions

9.4.4 Lobe Dynamics

9.4.5 The Pleural Compartment and Chest Wall

9.5 Simulink™ Model

9.6 Model Validation

9.7 Predictions of Pressure Oscillation Transmission Through the Tracheobronchial Tree

9.8 Closure

References 209
Appendix A: CPAP Air Delivery 211
 A.1 Positive Type Air Compressors 211
 A.2 Non-Positive Type Air Compressors 211
 References 214

Appendix B: Sensors Used in CPAP 215
 B.1 Digital Propeller Anemometer 215
 B.2 Electromagnetic Flow Meter 216
 B.3 Laser Doppler Anemometry (LDA) 216
 B.4 Hot Wire/Film Anemometer 217
 B.5 Ultrasonic Anemometer 219
 B.6 Summary 219
 References 221