Table of Contents

Guest Editors’ Preface iii
Series Editors’ Preface v
Abstract ix

Chapter 1 Magnetic bearings for assist devices 1
1.1 Fundamentals of magnetic bearings 2
1.1.1 Considerations of a full magnetic suspension 3
1.1.2 Active magnetic bearing (AMB) 5

Chapter 2 Structure of magnetic actuator 8
2.1 Properties of magnetic materials 8
2.2 Passive actuators 8
2.2.1 Typical passive configuration (radial passive bearing) 8
2.3 Active actuators 9
2.3.1 Typical radial 9
2.3.2 Flux biased magnetic bearings 11
2.4 Typical configuration of hybrid actuators 12
2.5 Electromagnetic coils 14
2.6 System configurations 16
2.6.1 Centrifugal vs. axial-flow configurations 16
2.6.2 Hydrodynamically assisted suspension 17
2.6.3 Motor assisted suspension 18

Chapter 3 Position sensors 19
3.1 Eddy current sensors 19
3.2 Inductance based sensors 20
3.3 Hall effect sensors 20
3.4 Optical sensors 20
3.5 Capacitive sensors 21
3.6 Self-sensing magnetic bearings 21

Chapter 4 Controller and electronics design 23
4.1 Design principle of one-axis suspension 23
4.2 Control laws 23
4.2.1 Proportional, integral, and derivative (PID) 25
4.2.2 Advanced control laws 26
4.3 Hardware 28
4.3.1 Analog-to-digital conversion and data acquisition 29
4.3.2 Processor 29
4.3.3 Power amplifier 30

Chapter 5 Performance considerations of magnetic bearings in VADs 31
5.1 System complexity 31
5.2 Weight and size 32
5.3 Power consumption 32
5.4 Physical disturbance rejection 33
5.5 Reliability and durability 33