TABLE OF CONTENTS

Preface xvii
Acknowledgments xix
Accreditation xxi
Forewords xxii
Metric Conversion of Some Common Units xxv

Chapter 1 Introduction to Hydrocarbon Liquid Pipelines 1
 1.1 Liquid Hydrocarbon Transportation System Scope 1
 1.2 Hydrocarbon Liquid Pipelines 1
 1.3 Liquid Pipeline Transportation System 3
 1.4 Types of Transmission Pipelines 5
 1.5 Liquid Petroleum Pipeline Networks 5
 1.6 Single Versus Multiple Products Pipeline 11
 1.6.1 Refined Petroleum Products 11
 1.7 Liquid Pipeline Development History/Chronology 12
 1.7.1 Historical Overview 12
 1.7.2 Codes, Standards and Regulations (Addressing Liquid Pipeline Design, Construction and Operation) 15
 1.7.3 Codes 15
 1.7.4 Regulations 16
 1.8 Major Pipeline Facilities Layout 22
 1.8.1 Pump Station 22
 1.8.2 Metering/Measurement 22
 1.8.3 Valve and Manifolds 26
 1.8.3.1 Valves 26
 1.8.3.2 Manifolds 27
 1.9 General Pipeline Operations 28
References 29
<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Hydrocarbon Liquid Properties</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hydrocarbon Liquids</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydrocarbon Liquids Phase Behavior</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Phase Diagram Determination</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Properties of Petroleum Liquids</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Mass, Volume, and Density</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Density and Thermal Expansion</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Compressibility, Bulk Modulus, and Thermal Expansion</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Compressibility</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Bulk Modulus K</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>Thermal Expansion</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3.4</td>
<td>Calculating Bulk Modulus for Various Fluids</td>
<td>41</td>
</tr>
<tr>
<td>2.3.3.5</td>
<td>Other Techniques for Calculating Bulk Modulus</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Specific Gravity and API Gravity</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Specific Gravities of Blended Products</td>
<td>44</td>
</tr>
<tr>
<td>2.5</td>
<td>Viscosity, Newtonian Versus Non-Newtonian</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Viscosity and Density Relationship</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Viscosity of Blended/Diluted Liquids</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>(A) New Volume from Current Volume, Current SG, and Target SG</td>
<td>48</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>(B) Viscosity Blending Calculation</td>
<td>48</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Hydrocarbon Liquids Blending and Volume Shrinkage</td>
<td>49</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Viscosity Determination</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Pour Point and Viscosity Relationship</td>
<td>50</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Reasons for Pour Point Determination</td>
<td>51</td>
</tr>
<tr>
<td>2.7</td>
<td>Vapor Pressure</td>
<td>52</td>
</tr>
<tr>
<td>2.7.1</td>
<td>True Vapor Pressure</td>
<td>52</td>
</tr>
<tr>
<td>2.8</td>
<td>Flash Point</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Hydrocarbon Liquid Specific Heat Capacity</td>
<td>55</td>
</tr>
<tr>
<td>2.10</td>
<td>Thermal Conductivity</td>
<td>56</td>
</tr>
<tr>
<td>2.11</td>
<td>Effect of Hydrocarbon Liquid Properties on Measurement Systems</td>
<td>57</td>
</tr>
<tr>
<td>2.11.1</td>
<td>(a) Base Conditions</td>
<td>57</td>
</tr>
<tr>
<td>2.11.2</td>
<td>(b) Impact of Phase Change</td>
<td>57</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Properties Important to Measurement Systems</td>
<td>57</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Factors Affecting Measurement Accuracy</td>
<td>58</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>System Hydraulics and Design</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Fundamentals of Liquid Pipeline Hydraulics</td>
<td>63</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Pipeline Flow Equations</td>
<td>63</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Continuity or Mass Conservation Equation</td>
<td>64</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Momentum Equation</td>
<td>64</td>
</tr>
</tbody>
</table>
3.1.3 Steady-State Solutions and Design Equations
3.1.3.1 Solution of Continuity Equation and Volume Correction 71
3.1.3.2 Solution of Momentum Equation and Pressure Profile Calculation 72
3.1.3.3 Solution of Energy Equation and Temperature Profile Calculation 75

3.2 Design Process
3.2.1 Codes and Standards 83
3.2.2 Design Factors (9) 84
3.2.2.1 Supply and Demand 84
3.2.2.2 Pipeline Route and Environmental Issues 85
3.2.2.3 Operating Parameters 86
3.2.2.4 Pipe Parameters 89
3.2.2.5 Pumping Parameters 93
3.2.2.6 Economic Factors 93
3.2.3 Hydraulic Design Procedure 96

3.3 Liquid Pipeline Design
3.3.1 Crude Oil Pipeline System — Isothermal Flow 99
3.3.2 Pipeline Configurations 104
3.3.2.1 Side Stream Delivery 105
3.3.2.2 Side Stream Injection 108
3.3.2.3 Pipeline in Series 112
3.3.2.4 Pipelines in Parallel 114
3.3.3 Severe Elevation Change — Slack Flow 115
3.3.4 Severe Weather Conditions 119
3.3.4.1 Pipeline in a Hot Environment 119
3.3.4.2 Pipeline in a Cold Environment 119
3.3.5 Batch Pipeline Hydraulics Design 120
3.3.6 High Vapor Pressure (HVP) Pipeline Design 122
3.3.7 Heavy Crude Pipeline Hydraulic Design 129
3.3.7.1 Determine the Physical Properties Under Pipeline Conditions 130
3.3.7.2 Determine the Pressure and Temperature Throughout the Pipeline for the Anticipated Flow Rates 131
3.3.7.3 Review the Restart After Shutdown 132
3.3.7.4 Design Facilities 133

3.4 Locating Pump Stations 136
Chapter 4 Pumps and Pump Stations 159

4.1 Introduction 159
4.2 Centrifugal Pumps 160

4.3 Centrifugal Pump Types
4.3.1 End Suction Single Stage Pumps 161
4.3.2 Vertical In-Line Single Stage Pumps 161
4.3.3 Horizontal Axially Split Between-Bearing Single-Stage Pumps 161
4.3.4 Horizontal Axially Split Between-Bearing Multi-Stage Pumps 161
4.3.5 Double–Case (Can) Vertically Suspended Volute Pumps 162

4.4 Pump Selection and Sizing 164
4.4.1 Pump Performance
4.4.1.1 Pump Performance Curves 165
4.4.2 Service Conditions 165
4.4.3 Net Positive Suction head (NPSH) 167
4.4.3.1 Net Positive Suction head Required (NPSHR) 167
4.4.3.2 Net Positive Suction head Available (NPSHA) 168
4.4.4 Specific Speed 169
4.4.5 Suction Specific Speed 170
4.4.6 Pump Performance Curve Characteristics 171
4.4.7 Centrifugal Pump Power and Efficiency 172
4.4.8 Performance Modifications for Varying Pipeline Applications 172
4.4.9 Cavitation 176
4.4.10 Viscous Hydrocarbon Behavior in Pumps 180
4.4.11 Temperature Rise 181
4.4.12 Minimum Flow 182

4.5 Pump Specification and Purchase 182
4.5.1 Pump Data Sheets 182

4.6 Retrofitting Centrifugal Pumps for Changing Service Conditions 183
4.6.1 Reduced Pipeline Throughput 183
4.6.2 Increased Pipeline Throughput 183
4.6.3 Affinity Laws 184

4.7 Pipeline Hydraulic Requirements 185
4.7.1 System Head Curves and Pump Operating Points 185
4.7.2 Hydraulic Performance in Bached Pipeline Systems with Constant Speed Pumps 188
Chapter 4 Pump Systems and Pipeline Operation

4.7.3 Hydraulic Performance in Batched Pipeline Systems

with Variable Speed Pumps 189

4.7.4 Pump Configurations

4.7.4.1 Parallel Operation 190

4.7.4.2 Series Operation 192

4.8 Pump Drivers 192

4.9 Pump Station Design

4.9.1 Pump Station Diagram 196

4.9.2 Pump Station Piping 196

4.9.3 Control Valve and Sizing 197

4.9.4 Station Flow Recirculation 198

4.9.5 Pig Launcher and Receiver 199

4.9.6 Pump Station at a Tank Farm 200

4.9.7 Pump Station Heater 201

4.10 Pipeline System Control

4.10.1 Pump Station Operation 203

4.10.2 Pump Control Strategy 206

4.10.3 Station Control

4.10.3.1 Pump Station Valve Control 207

4.10.4 Injection/Delivery Station Control 208

4.10.5 Pump Unit Control 208

4.10.6 Throttling vs. Speed Controls

4.10.6.1 Throttling for Fixed Speed Pumps 210

4.10.6.2 Speed Control for Variable Speed Pumps 211

4.11 Station Electrical Control

4.11.1 Station Auxiliary Systems 213

4.11.2 Shutdown Modes

4.11.2.1 Emergency Shutdown System 214

4.12 Applicable Codes and Standards 215

References 215

Chapter 5 Pipeline Operation and Batching 217

5.1 Pipeline Operation

5.1.1 Pipeline System Operation 217

5.1.2 Concepts of Pipeline Transient Flow 220

5.1.3 Surge Control

5.1.3.1 Control Devices 230

5.1.3.2 Pump Unit and Pump Station Operations 231

5.1.3.3 Special Surge Relief Devices 234

5.1.4 Example of Pipeline Operation and Surge Control

5.1.4.1 Scheduled Pipeline System Start-Up 236

5.1.4.2 Scheduled Pipeline System Shutdown 240

5.1.4.3 Emergency Shutdown of the Pipeline System 242

References 215
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.4.4 Batch Operation</td>
<td>242</td>
</tr>
<tr>
<td>5.1.5 Transient or Surge Analysis</td>
<td>243</td>
</tr>
<tr>
<td>5.2 Liquid Batching Transportation</td>
<td>245</td>
</tr>
<tr>
<td>5.2.1 Types of Liquid Pipelines</td>
<td>245</td>
</tr>
<tr>
<td>5.2.2 Liquid Hydrocarbon Batching</td>
<td>245</td>
</tr>
<tr>
<td>5.2.3 Batched Product Pipeline Growth and Technique</td>
<td>247</td>
</tr>
<tr>
<td>5.2.4 Products Batching Definitions and Terms</td>
<td>248</td>
</tr>
<tr>
<td>5.2.4.1 Batch Sequencing</td>
<td>249</td>
</tr>
<tr>
<td>5.2.4.2 Batch Cycle/Slug</td>
<td>250</td>
</tr>
<tr>
<td>5.2.4.3 Buffers</td>
<td>250</td>
</tr>
<tr>
<td>5.2.4.4 Batching Travel Time</td>
<td>251</td>
</tr>
<tr>
<td>5.2.4.5 Batch Interface Marking and Detection</td>
<td>251</td>
</tr>
<tr>
<td>5.2.4.6 Batch Injection, Transportation and Delivery</td>
<td>252</td>
</tr>
<tr>
<td>5.2.4.7 Batch Reporting</td>
<td>253</td>
</tr>
<tr>
<td>5.2.5 Minimum Batch Size</td>
<td>253</td>
</tr>
<tr>
<td>5.2.6 Crude Oil Contamination</td>
<td>254</td>
</tr>
<tr>
<td>5.2.6.1 Natural Crude</td>
<td>254</td>
</tr>
<tr>
<td>5.2.6.2 Synthetic Crude</td>
<td>254</td>
</tr>
<tr>
<td>5.2.6.3 Contamination Level</td>
<td>255</td>
</tr>
<tr>
<td>5.2.7 Interface-Volume Estimations</td>
<td>256</td>
</tr>
<tr>
<td>5.2.7.1 Batch Calculation and Tracking Example</td>
<td>258</td>
</tr>
<tr>
<td>5.2.7.2 Results</td>
<td>259</td>
</tr>
<tr>
<td>5.2.8 Batched Products Pipeline Design and Operational Issues</td>
<td>259</td>
</tr>
<tr>
<td>5.2.8.1 Design and Operational Issues</td>
<td>260</td>
</tr>
<tr>
<td>5.2.8.2 Operation and Control</td>
<td>262</td>
</tr>
<tr>
<td>5.2.8.3 Pipeline System Operation/Control</td>
<td>267</td>
</tr>
<tr>
<td>5.2.9 Practical Batch Operation in Real-Time</td>
<td>274</td>
</tr>
<tr>
<td>5.2.9.1 Batch Launch and Delivery</td>
<td>275</td>
</tr>
<tr>
<td>5.2.9.2 Launching and Delivery Operation</td>
<td>276</td>
</tr>
<tr>
<td>5.2.9.3 Batch Tracking</td>
<td>276</td>
</tr>
<tr>
<td>5.2.10 Multiproduct Pipeline Batch Optimization</td>
<td>278</td>
</tr>
</tbody>
</table>

Addendum to Chapter 5

Pipeline System Surge Mitigation Equipment

A5.1 Flow Control Valves | 279 |
A5.2 Check Valves | 282 |
A5.3 Relief Valves | 286 |
A5.4 Bursting/Rupture Disc | 287 |
A5.5 Surge Diversion Valve | 287 |
A5.6 Increasing Pipeline Diameter and/or Wall Thickness | 288 |
A5.7 Variable Speed Drives and Soft Starters | 288 |
A5.8 Valve Opening and Closure Times | 289 |
A5.9 Surge Tanks | 289 |
A5.10 Pump Bypass Check Valves | 290 |
A5.11 Applications | 290 |
Table of Contents

References 292

Chapter 6 Non-Conventional Hydrocarbon Liquids, Production, and Transportation 295

6.1 Heavy Oil Technology and Transportation 295
 6.1.1 Background 295
6.2 Heavy Oil Types and Global Distribution 297
6.3 Heavy Oils Property and Type 299
 6.3.1 Types/Grouping 300
 6.3.2 Oil Viscosity Prediction 301
6.4 Heavy Oils Transportation Technologies 302
 6.4.1 Dilution 303
 6.4.2 Upgrading/Partial Upgrading 304
 6.4.3 Heating/Thermal Upgrading 305
 6.4.4 Water Emulsion 307
 6.4.5 Core Annular Flow (CAF) 308
 6.4.6 Surfactant/Flow Improvers 309
 6.4.7 Slurry Transportation 312
 6.4.8 Comparison of Transportation Techniques 312
6.5 Heavy Crudes Properties for Pipeline Transportation 315
 6.5.1 Grouping of Crudes and Designations 315
 6.5.2 Typical Properties 316
6.6 Heavy Oil Pipeline Transportation Example—Role of Design for Operational Control 317
 6.6.1 Summary on Role of Design 317
 6.6.2 Need for Transient Analysis 318
 6.6.3 Surge Mitigation Methods 320
 6.6.4 Code Requirement 321
 6.6.5 Case Study—Application to a Heavy Oil Pipeline Projects 322
 6.6.5.1 Fluid Properties 323
 6.6.5.2 Simulation Model and Data 324
 6.6.6 Batch Movement/Transient Simulation Time 327
 6.6.7 Simulations Scenarios and Techniques 328
 6.6.7.1 Time Steps and Pipe Segment “Knot Spacing” 328
 6.6.7.2 Valve Closure and Station Shutdown Timing Sequence 329
 6.6.8 Simulation Results 329
 6.6.8.1 Effect of Valve Closures 329
 6.6.8.2 Effects Due to Pump Stations Shutdown 330
 6.6.8.3 Delivery Restriction (Zero Delivery) 332
 6.6.8.4 Terminal PCV Closure 332
 6.6.8.5 Effect of Minimum Flow Delivery at Maximum Pump Stations Discharge Pressure—Line Packing Conditions 332
 6.6.9 Conclusion 333
Table of Contents

Addendum to Chapter 6
Heavy Oil Resources and Recovery Techniques
A6.1 **Heavy Oil Resource Base**
A6.2 **Bitumen and Heavy Oils Recovery/Extraction Techniques**
- A6.2.1 Extraction/Recovery Techniques
- A6.2.2 Production Techniques Scope
- A6.2.3 Recovery Techniques Summary
- A6.2.4 Oil Reservoir Classifications

References

Chapter 7 **Liquid Measurement**

7.1 **Introduction**

7.2 **Static Measurement**

- 7.2.1 **Tank Calibration**
 - 7.2.1.1 Manual Tank Strapping Method (MTSM)
 - 7.2.1.2 Optical Reference Line Method (ORLM)
 - 7.2.1.3 Optical Triangulation Method (OTM)
 - 7.2.1.4 Electro-Optical Distance Ranging Method (EODRM)

- 7.2.2 **Tank Capacity Tables**

- 7.2.3 **Liquid Calibration of Tanks**

7.3 **Tank Gauging**

- 7.3.1 **Manual Tank Gauging**
- 7.3.2 **Servo Tank Gauge**
- 7.3.3 **Radar Tank Gauge**
- 7.3.4 **Hybrid Tank Measurement Systems**
- 7.3.5 **Calculation of Tankage Volumes**

7.4 **Dynamic Measurement**

- 7.4.1 **Measurement Systems and Characteristics**
- 7.4.2 **Measurement Uncertainty**
 - 7.4.2.1 Quality of Liquids
 - 7.4.2.2 Device Degradation
 - 7.4.2.3 Operational Problems
 - 7.4.2.4 Calibration
 - 7.4.2.5 Transducer/Transmitter

- 7.4.3 **Custody Transfer Requirements**

- 7.4.4 **Types of Meters**
 - 7.4.4.1 Positive Displacement Meters
 - 7.4.4.2 Turbine Meters
 - 7.4.4.3 Ultrasonic Meters
 - 7.4.4.4 Coriolis Meters

- 7.4.5 **Meter Selection**
 - 7.4.5.1 Meter Sizing
 - 7.4.5.2 Instrumentation and Accessories
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.5.3 Flow Computers</td>
<td>379</td>
</tr>
<tr>
<td>7.4.6 Meter Station Design</td>
<td>380</td>
</tr>
<tr>
<td>7.4.6.1 Meter Station Components</td>
<td>381</td>
</tr>
<tr>
<td>7.4.6.2 Meter Run</td>
<td>382</td>
</tr>
<tr>
<td>7.4.6.3 Meter Provers</td>
<td>384</td>
</tr>
<tr>
<td>7.4.7 Prover Types</td>
<td>386</td>
</tr>
<tr>
<td>7.4.7.1 Tank Provers</td>
<td>386</td>
</tr>
<tr>
<td>7.4.7.2 Conventional Pipe Provers</td>
<td>386</td>
</tr>
<tr>
<td>7.4.8 Prover Calibration</td>
<td>390</td>
</tr>
<tr>
<td>7.5 Volume Accounting System</td>
<td>392</td>
</tr>
<tr>
<td>7.5.1 Ticketing Functions</td>
<td>393</td>
</tr>
<tr>
<td>7.5.2 Meter Ticket</td>
<td>394</td>
</tr>
<tr>
<td>7.5.3 Tank Ticket</td>
<td>395</td>
</tr>
<tr>
<td>7.5.4 Volume Tracking</td>
<td>396</td>
</tr>
<tr>
<td>7.5.5 Volume Calculation and Balancing</td>
<td>396</td>
</tr>
<tr>
<td>7.5.5.1 Volume Calculations</td>
<td>396</td>
</tr>
<tr>
<td>7.5.5.2 Meter Factor and Calibration</td>
<td>396</td>
</tr>
<tr>
<td>7.5.6 Determination of Liquid Volume</td>
<td>396</td>
</tr>
<tr>
<td>7.5.7 General Equations for Determining Liquid Volumes at Base Conditions</td>
<td>397</td>
</tr>
<tr>
<td>7.5.8 Volume Balancing</td>
<td>399</td>
</tr>
<tr>
<td>Addendum: Standards Relevant to Liquid Petroleum Measurement</td>
<td>400</td>
</tr>
<tr>
<td>A7.1 American Petroleum Institute (API)—www.api.org</td>
<td>400</td>
</tr>
<tr>
<td>A7.3 American National Standards Institute/ American Society of Mechanical Engineers</td>
<td>403</td>
</tr>
<tr>
<td>A7.4 International Organization for Standardization (ISO)—www.iso.org</td>
<td>403</td>
</tr>
<tr>
<td>References</td>
<td>405</td>
</tr>
</tbody>
</table>

Chapter 8 Hydrocarbon Petroleum Tankage and Terminal Design 407
8.1 Introduction and Overview 407
8.2 History and Reasons for Use 410
8.3 Products Stored and Properties 412
8.4 Types of Petroleum Storage Tanks 415
8.4.1 Definition and Classifications 415
8.4.2 Types 416
8.4.2.1 Fixed Roof Tanks 416
8.4.2.2 Floating Roof Tanks 419
8.4.3 Emission Control in Storage Tanks 428
8.4.3.1 Tank Rim Sealing Systems: Floating Roof Tanks 428
8.4.4 Tank Fittings and Appurtenances 435
8.5 Petroleum Storage Tanks Standards (For Design, Operation and Protection) 445
8.6 Regulations Affecting Terminal and Storage Facilities 450
8.7 Petroleum Storage/Terminal Design and Construction 452
 8.7.1 Typical Layout and Spacing 452
 8.7.2 Tank Design (Including Sizing, Materials and Construction) 456
 8.7.2.1 Design Data 456
 8.7.2.2 Design Calculations 457
 8.7.2.3 Tank Material 465
 8.7.3 Civil Design 465
 8.7.3.1 Tank Foundation 465
 8.7.3.2 Types of Foundations 469
 8.7.3.3 Bund Walls/Dykes 471
 8.7.4 Fabrication and Welding 474
 8.7.4.1 Tank Construction—Fabrication and Welding 474
 8.7.4.2 Welding Techniques 476
 8.7.4.3 Post Weld Heat Treatment of Welded Tanks Structures 482
 8.7.4.4 Construction of Spheres 485
 8.7.5 Mechanical/ Piping Components and Instrumentation 485
 8.7.5.1 Mechanical Appurtenances 485
 8.7.5.2 Instrumentation and Controls 486
 8.7.6 Tank Venting Emission Calculations 490
 8.7.6.1 Total Losses from Fixed Roof Storage Tanks 491
 8.7.6.2 Total Losses from Floating Roof Tanks 499
 8.7.7 Operational Issues 500
 8.7.8 Cathodic Protection of Above ground Hydrocarbon Storage Tanks 503
 8.7.8.1 Definition of Corrosion 503
 8.7.8.2 Corrosive Environment 503
 8.7.8.3 Consequences of Corrosion 503
 8.7.8.4 Types of Corrosion 506
 8.7.8.5 Storage Tank Cathodic Protection 510
 8.7.8.6 Above Ground Storage Tank CP System 517
 8.7.8.7 Typical CP Installation for Above Ground Storage Tanks 519
 8.7.8.8 Applicable CP Standards 519
 8.8 Tank Failures and Emergency Response 520
 8.8.1 Tank Failures 520
 8.8.1.1 Past Accidents 523
 8.8.1.2 Causes of Tank Failure Hazards 524
 8.8.2 Designing Tankage Systems to Minimize Hazards 528
 8.8.2.1 Effective Steps 528
 8.8.3 Design of a Foam System for Fire Protection of Storage Tanks 537
 8.8.3.1 Identifying Flammable Liquid 537
Table of Contents

8.8.3.2 Types of Foam Discharge Outlets 538
8.8.3.3 Foam System for Fire Protection of Storage Tanks 538
8.8.3.4 Foam Dam Design for Tanks 543

8.9 Emergency Response Planning and Facilities 543
8.9.1 Planning for the Emergency 544
8.9.2 Responding to Oil Spill Emergencies 544
8.9.3 Tactical Priorities 545
8.9.4 Foam Application 545
8.9.4.1 Foam Supply 546
8.9.4.2 Water Supply 547
8.9.4.3 Exposure Protection 547

References 548

Chapter 9 Liquid Pipeline Operation 551

9.1 Supervisory Control and Data Acquisition (SCADA) 551
9.1.1 Introduction 551
9.1.2 Pipeline System Monitoring and Control 554
9.1.3 Control Center and SCADA System 554
9.1.4 Data Communications 559
9.1.5 Data Management 562
9.1.6 Alarms 564
9.1.7 Human Machine Interface (HMI) and Reporting 566
9.1.8 Security 571

9.2 Overview of Pipeline Leak Detection System 572
9.2.1 Introduction 572
9.2.2 Overview of Leak Detection Techniques 576
9.2.2.1 Inspection Methods 576
9.2.2.2 Sensor Methods 577
9.2.2.3 Computational Pipeline Monitoring (CPM) Methods 579
9.2.3 Implementation and Operation 584
9.2.4 Leakage Response 587
9.2.5 Summary 587

9.3 Drag Reducing Agent (DRA) 587
9.3.1 Introduction 587
9.3.1.1 Drag Reduction Mechanism 588
9.3.1.2 Benefits of Using a DRA 589
9.3.2 DRA Characteristics and Performance 590
9.3.3 DRA Operations 590
9.3.3.1 DRA Facilities 590
9.3.3.2 DRA Injection 590
9.3.3.3 DRA Concentration Tracking 593
9.3.3.4 DRA Limitations on Operation and Design 593
9.3.4 DRA Correlations 594
<table>
<thead>
<tr>
<th>Section Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4 Tank Farm Operation and Volume Measurement</td>
<td>596</td>
</tr>
<tr>
<td>9.4.1 Tank Farm Operation</td>
<td>597</td>
</tr>
<tr>
<td>9.4.2 Tank Control</td>
<td>600</td>
</tr>
<tr>
<td>9.4.3 Tank Volume Measurement</td>
<td>602</td>
</tr>
<tr>
<td>9.4.4 Tank Inventory</td>
<td>602</td>
</tr>
<tr>
<td>9.5 Power Cost Control</td>
<td>603</td>
</tr>
<tr>
<td>9.5.1 Power Demand Control</td>
<td>604</td>
</tr>
<tr>
<td>9.5.2 Pump Unit Operating Statistics</td>
<td>604</td>
</tr>
<tr>
<td>9.5.3 Pump Station Monitoring</td>
<td>605</td>
</tr>
<tr>
<td>9.5.4 Power Optimization</td>
<td>606</td>
</tr>
<tr>
<td>References</td>
<td>608</td>
</tr>
</tbody>
</table>

Appendix Glossary of Terms and Acronyms

References

References 644