

MC133

Verification and Validation in Scientific Computing

Day 1

- Introduction, Background, and Motivation
- Terminology and Fundamental Concepts
 - Brief history of terminology
 - Present definitions and interpretations
 - Alternate definitions used by related communities
 - Additional important terms
 - Who should conduct verification, validation, and uncertainty quantification?
- Code Verification
 - Software engineering
 - Criteria and definitions
 - Order of accuracy
 - Order of verification procedures
 - Traditional exact solutions
 - Method of manufactured solutions
 - Approximate solution methods
- Solution Verification
 - Round-off error
 - Iterative convergence
 - Iterative error estimation
 - Classification of discretization error estimators
 - Reliability of discretization error estimators
 - Discretization error and uncertainty estimation
 - Solution adaption procedures

Day 2

- Validation Experiments
 - Validation fundamentals
 - Validation experiment hierarchy
 - Validation experiments vs. traditional experiments
 - Six characteristics of validation experiments
 - Detailed example of a wind tunnel validation experiment
- Model Accuracy Assessment
 - What are validation metrics?
 - Various approaches to validation metrics
 - Recommended characteristics for validation metrics
 - Confidence interval approach
 - Cumulative distribution functions approach

- Predictive Capability of Modeling and Simulation
 - Identify all sources of uncertainty
 - Characterize each source of uncertainty
 - Estimate solution error in system responses of interest
 - Estimate uncertainty in system responses of interest
 - Procedures for updating model parameters
 - Types of sensitivity analyses
- Final Topics
 - Planning and prioritization in modeling and simulation
 - Maturity assessment of modeling and simulation
 - Difficulties in implementing verification, validation, and uncertainty quantification (VVUQ)