Safety Standard for Structural Requirements for Heavy Rail Transit Vehicles
Safety Standard for Structural Requirements for Heavy Rail Transit Vehicles
The next edition of this Standard is scheduled for publication in 2019. This Standard will become effective 6 months after the Date of Issuance.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Interpretations are published on the ASME Web site under the Committee Pages at http://cstools.asme.org/ as they are issued.

Errata to codes and standards may be posted on the ASME Web site under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The Committee Pages can be found at http://cstools.asme.org/. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.
CONTENTS

Foreword ... iv
Committee Roster .. v
Correspondence With the RT Committee vi
Introduction ... vii
Summary of Changes .. viii

1 Scope .. 1
2 Definitions ... 1
3 Interoperability .. 2
4 Structural Requirements ... 2
5 Design Load Requirements ... 5
6 Coupler System .. 5
7 Materials ... 6
8 Crash Energy Management (CEM) 6
9 Analysis ... 6
10 Tests .. 8

Tables
1 Structural Load Requirements 3
2 Crashworthiness ... 7