

Managing Systems
Development 101

A Guide to Designing Effective
Commercial Products & Systems for
Engineers & Their Bosses/CEOs

James T. Karam

The Technical Manager’s Survival Guides, Volume 2
Marcus Goncalves, Series Editor

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 iii

Table of Contents

Table of Figures...v

Table of Tables ..v

Preface .. vii

Acknowledgments... ix

Introduction ... 1

Chapter 1 Project Systems Engineering 101 ... 5

Design Requirements... 7
Verification & Validation ... 11

Reviews .. 12
Analysis & Similarity ... 15
Test... 16

Barbie® Dolls ... 18
Change Management... 19
Third Time’s the Charm.. 20

Chapter 2 Program Planning 101 ... 23

Noah’s Principle & Earned Value ... 32
Scheduling Morality .. 42
Management Reserve .. 44

Chapter 3 System Evolution ... 47

Bid & Proposal.. 47
Architect for Fault Tolerance .. 50
Make It Work, then Robust. Only Then, Make It Better. 52
Branching is a Necessary Pain .. 53
Numbers are Better than Judgment ... 54
Customers Need Managing Too .. 55
Closing Out... 56

Chapter 4 Often Forgotten Programming 101.. 57

Chapter 5 User Interface Design 101 ... 63

Clickable Mockups, Often in Lieu of Specs.. 64
Admittedly Biased Design Practices .. 65

Chapter 6 Presentations 101.. 73

Chapter 7 Find & Flush the Full In-Boxes... 77

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 iv

Chapter 8 Continuous Improvement 101 ... 79
Categorizing Defects .. 80
Engineering Metrics.. 88
Production & Service Metrics ... 90

Chapter 9 Performance Ranking 101 ... 95

Chapter 10 Incentive Criteria 101... 99

Chapter 11 Matrix Organization 101... 103

Chapter 12 Tailor Your Behavior to the Software, not Vice Versa 107

I’ve Never Found the Software that I’d Rather Write than Buy. 108

Closing Thoughts.. 113

Additional Reading.. 115

Index ... 119

About the Author... 123

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 v

Table of Figures

Figure 1.1 Key System Engineering Elements.. 6
Figure 1.2 Decomposition Hierarchy ... 8
Figure 2.1 Ditch Digging Project Plan.. 24
Figure 2.2 Estimating with Factors .. 31
Figure 2.3 CPI Likelihood .. 34
Figure 2.4 Cumulative Earned Value... 36
Figure 2.5 Earned Value Indices ... 37
Figure 2.6 Incremental Earned Value.. 39
Figure 2.7 Integrated Earned Value Status ... 41
Figure 5.1 GUI Illustration.. 66
Figure 6.1 Horse Charts .. 76
Figure 7.1 Full In-boxes... 78
Figure 8.1 Bug Quantity... 89
Figure 8.2 Bug Aging... 89
Figure 8.3 Work In Progress (WIP) Defects .. 91
Figure 8.4 Install Defects... 92
Figure 8.5 Mature Product Post Install Defects..................................... 92
Figure 8.6 New Product Post Install Defects... 93
Figure 9.1 Merit Pay versus Rank ... 98
Figure 10.1 Individual Performance Incentive 100
Figure 10.2 Group Performance Incentive .. 101

Table of Tables

Table 2.1 Project Planning Granularity.. 25
Table 8.1 Defect Severity Classes .. 81
Table 8.2 Defect Urgency Codes .. 85
Table 8.3 Known Issues .. 87
Table 11.1 Boss Duality in a Matrix ... 103

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 vii

Preface

I have had the good fortune to be associated with the development of
large-scale systems for over forty years. These are products that are
developed by more than one team, working in parallel, which must be
interfaced and integrated together. The point is not so much their
physical size but the need to manage and integrate multiple efforts
simultaneously. Experience suggests that a single good lead engineer
can indeed keep a design all in his head and direct a handful or so of
engineers. While that works for many games, web applications, and IT
projects, it does not work for systems. There are just too many people
involved, in more than one team, and often not even co-located.

I was particularly blessed to start my career as an R&D officer in the
United States Air Force (USAF) in the timeframe when systems
engineering was being formalized well by the Department of Defense
(DOD), and the Air Force in particular, based on their good and bad
experiences in the late fifties fielding Intercontinental Ballistic Missiles
(ICBM’s). As I moved out from aerospace into commercial
developments, there was a learning curve on my part regarding how
much of those aerospace processes and formalism were relevant in this
seemingly different arena. I soon concluded that those processes were
key for any successful system development. Only the formalism was
negotiable or tailorable.

I frequently found myself resurrecting some common threads of advice
and direction as I moved among several industries and company
organization types. It did not seem to matter what we were making, or
whether it was a large multi-national corporation or one with the founder
still in sole control. The engineering management issues were eerily the
same. I would pull out an earlier presentation or document, tweak a logo
and a bit of text, and influence a new set of staff. This book is a heavily
edited and expanded compilation of those lessons re-taught over the
years.

You will find the advice is invariably basic, hence the titles ending in
“101”. The management problems encountered were because of a
failure to understand or enforce those basics, and their enforcement is
not easy. In effect, experience says that your focus should always
remain on these basics.

I have intentionally tried to make this book easy to browse using a
somewhat unique style that evolved over the years. Most chapters use
a bold-type opening sentence in each paragraph. You can get the key
assertions by just skimming them. Those claims are elaborated in the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 viii

rest of the paragraph. If the reader is familiar with systems engineering
terminology, that is probably sufficient. If not, I have often followed with
subsequent indented paragraphs that elaborate further.

This book is likely most valuable to young engineers who are moving out
of their academic specialty into engineering or project management,
about which they probably were taught very little that was practical. And,
yes, I shoulder some of that blame myself since there is a stint of
teaching graduate engineering school on my resume’. The book is also
intentionally succinct. While we usually explain our rationale, rather than
just assert, our intent is to provide the reader with cogent advice that
they can quickly absorb and effectively apply. As such, it should also
serve as a useful quick reminder to more senior professionals, typically
when they have been given a broadening assignment that forces them
into new professional terrain.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 ix

Acknowledgments

David Lapczynski and Dr. Milton Franke were invaluable in their
insightful review and comment on several drafts of this book. Dave is
the COO at Cubic Transportation Systems and was a great last boss as
well as a good friend. At his behest, I would like to beat a dead horse
and re-emphasize the importance of detailed, resourced schedules for
managing projects or product developments. Milt was, in effect, my first
boss as he was my major professor on my Masters thesis at the Air
Force Institute of Technology, where he still actively teaches, and is
likewise a life-long friend. I was blessed with working with many true
professionals all of my career, but none better than these at the start and
end.

I mainly want to thank my wife Alicia for enduring almost thirty years of
marriage while retaining such a gracious and loving spirit. She is my
best friend of all.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

1

Introduction

So, are you a young engineer that has been asked to become a lead for
a team of specialists to work on a product or project that requires many
different skills or even several teams? Have you been a lead engineer
but have now been asked to be a manager of your department? Have
you shown both the inclination and the capability to broaden out of your
specialty to become a project or product development chief engineer or
manager? Have you managed projects or departments and now you
have been asked to manage those managers? In all these cases, you
are confronting topics daily that they never taught you in school as you
find yourself involved with managing the engineering of what are called
“systems”.

Managing the development of large-scale systems can be both fun and
satisfying. The U.S. Department of Defense (DOD), notably the Air
Force (USAF), codified the methodology of such management in the late
fifties and sixties in MIL-STD 499 and its ilk. They took their lessons
learned from fielding Intercontinental Ballistic Missiles and the like, both
good and bad, and embodied them in processes that continued to
mature. Many engineers spent at least some of their career in
aerospace and this systems culture. However, since “peace broke out”
in the early nineties, this opportunity for systems on-the-job training
(OJT) has substantially diminished.

This book addresses many of the key topics you will face in your
expanded responsibilities. There are good textbooks on the topic of
systems engineering, but most still focus primarily on the very large
systems of systems typical of aerospace and defense. Further, as
textbooks, they tend to focus understandably on the generic processes
involved, primarily regarding the earlier phases of development.
Regardless, several are cited in a closing section as candidates for
additional reading. Instead, this book focuses on specific practical
advice to use when executing those processes in commercial
environments. In effect, our focus is on the practical mechanics of
management. As such, it can also provide an incisive refresher of useful
tricks of the trade even for professionals in aerospace.

While large commercial systems also existed, they were mostly the
domain of mainframe computer developers until the eighties with its
advent of the ubiquitous personal computer (PC). Then the nineties saw
the introduction of the World Wide Web (WWW) and a plethora of
personal and business software applications of all sizes. Further, PCs
became so powerful that many, if not most, applications that used to
require large computers or, more commonly, highly specialized and

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 2

customized electronic hardware could now run on these relatively cheap
machines.

Almost every capital goods industry saw their hardware commoditized to
some degree with their products’ functionality provided mostly by
software. This commoditization of hardware was a watershed event as it
meant that software development would become a critical asset (or
heartache) for most every industry and product. Moreover, large
systems were routinely created using a collection of PCs, some evident
and some embedded, but PCs nonetheless. So, where did developers
learn to put such commercial systems together? Folklore said that
aerospace processes were gross overkill with an excessive focus on
paperwork.

In addition to the regulated industries like nuclear and medical
equipment that had done so previously, most companies in all industries
formalized their system development processes in response to the
pragmatically mandatory need to get themselves certified to the ISO-
9000 quality standard in the nineties. Many made the mistake of over-
promising, particularly with respect to the paperwork, since they
proposed to behave like they thought someone might have expected,
rather than what they had always done. Either they drowned in their
own paperwork, or, more commonly, quickly lapsed into old habits and
prayed an auditor would not show soon. (The proper solution was to edit
the procedures and processes to reflect what was reasonable.
Generally, auditors do not tell you what you should do, but only if you are
complying with what you said you should do.)

As one who stumbled through some of those choices, my conclusion
quickly became that, while one should tailor the formalism in a
commercial environment, systems are systems, and the aerospace
system engineering process basics remain the key to success
anywhere. While somewhat facetious, the section titles typically end in
“101” because the basics are where your problems, and their solution,
lie.

Chapter 1 starts with a review of the key elements of the project systems
engineering process. While still the way of life in aerospace and
defense, many engineers in commercial enterprises lack exposure to
even the terminology of systems development. This initial chapter
provides that context along with practical advice regarding execution.
Project/program planning is addressed in Chapter 2, as these plans, in
effect, become the internal contracts between the various development
groups and their management and customers. In fact, it is hard to even
claim that one is a manager without a plan, much less actually manage,
rather than just react. This section ends with Chapter 3 discussing

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Introduction

 3

several topics to consider pragmatically during the various phases of a
program or product’s lifecycle or evolution, notably at the beginning and
at the end of a project.

The next chapters address some of the key mechanics of managing
systems development. Since software is such a dominant part of any
system nowadays, we start Chapter 4 with a set of very basic design
practices that seem to be ignored or forgotten by developers. These
topics were taught in school, probably in their introductory courses, and
staff usually resent being reminded. However, they recur so often that
they should remain your focus. Chapter 5 recommends using clickable
mockups to facilitate timely development of graphical user interfaces
(GUIs) in products. While admitting that they represent just one
particular religious bias, we also include an example of GUI design
practice rules. We said “religious” because, like many other issues,
there is no technical right or wrong involved, just a preference.
Nevertheless, the benefit arises to your team because you state your
belief, almost independent of its specifics.

Chapter 6 moves away from managing software to using software to
make presentations. Every manager is also, some would say mostly, a
salesperson. While presentation style would seem to be the ultimate
religious preference, we recommend that you become a zealot. Very
simple rules are recommended, and they work. Chapter 7 implores and
explains how to find and empty all the full in-boxes in your span of
control. Nothing you can do will improve responsiveness more. Then,
the process of Continuous Improvement is advocated and explained in
Chapter 8, with practical examples from all operational departments.

The next set of chapters address people-related topics since people are
your means to success. Chapters 9, 10, and 11 address performance
ranking, incentive criteria, and matrix organizational structures,
respectively. These provide a succinct practical guide to these topics
whose mechanics are rarely dealt with, except by osmosis.

Finally, Chapter 12 offers success in improving your productivity with
tools, provided you adapt your behavior to them, not vice versa.

Closing remarks refresh our key advice. Candidates for additional
reading conclude the text.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

5

Chapter 1 Project Systems Engineering 101

Systems engineering is nothing new but rather a methodical perspective
to organizing sound engineering practice in an auditable manner, even
when only self-audited. As shown in Figure 1.1, one can group
engineering activities into five main categories: requirements,
implementation, verification, validation, and record/evolve. While
reasonable professional practice in any case, members of regulated
industries must document all such activities to enable external audit of
their effectiveness and integrity.

This chapter presents an overarching design process perspective and
terminology, particularly for those readers with minimal exposure to
aerospace and defense. Interspersed throughout are pragmatic
guidelines and recommended detailed practices. The design process
presented is a classical “linear” or “waterfall” scheme, which admittedly
has lost its cachet, particularly among academics and large-scale
systems of systems practitioners. However, it still represents the
foundational basics that will be central to your commercial success. One
would typically formalize a procedure and associated internal forms for
each box shown in Figure 1.1, e.g., as part of an ISO-9000 certification.

Administratively, the first step in the systems engineering process is the
formal authorization of a project/product. Part of that authorization is
typically a project plan, which also provides a summary of resources
required and schedules. A subsequent chapter discusses planning in
more detail. Engineering has likely been involved with a project or
product even earlier than this formal authorization event, typically
spending sales and/or marketing budget supporting their development of
draft specifications, conceptual prototypes, focus group mockups, and
the like. However, most companies understandably require a formal
authorization event before any non-trivial sums are spent, usually
whenever budgeted funds are first provided directly to engineering.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 6

Figure 1.1 Key System Engineering Elements

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 7

Design Requirements

Functional requirements start the systems engineering technical
process. Functional requirements have a “black box” perspective.
That is, one should not be able to ascertain anything about a particular
implementation. “Form, fit and function” (F-cubed) is another
common descriptor. As this term implies, a functional specification
addresses the inputs, outputs, transfer functions, environments, shape,
other physical interfaces, signals and/or commands, other software or
electronic interfaces, and the like.

“Black box” is a common technical slang that implies the
viewer is unable to see inside the box. As such, all one can
see is how the box behaves in processing its inputs to produce
its outputs, just the functional perspective we need in these
specifications. For completeness, “white box” means you can
see all the internal details. This term is commonly used to
describe software testing where one has had access to the
creator’s source code.

“That’s a solution, not a requirement” is probably the most
common remark you will have to make when reviewing
specifications. Again, it seems to be part of the engineering
psyche as it is independent of industry and even experience.
Since these functional specifications (or design requirements
documents, or whatever your company’s nomenclature) are
often contractual, it is in your self-interest as the developer to
retain as much design freedom as possible.

Commercial customers love to specify solutions also.
Gently push back and recast as a requirement.

Ambiguity in a specification is always to the buyer’s advantage.
Instead, as a developer, you need as much functional specifics as you
can possibly define. Naive staffs seem to think that if requirements are
vague or silent, then they get to define what was meant after the fact.
Just the opposite is true and is the major cause of feature-creep that has
killed many projects, or at least made them painful for the developers.
Remember, if the buyer does not believe that you could easily convince
a third party that you were in compliance, they retain the ultimate control
because they have yet to pay for your product or services. The Golden
Rule, “Whoever has the gold, rules”, only applies if they believe they
would win in court.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 8

This functional specification is the key contract you are
making with your bosses or your customer. Developing
these is not an easy proposition, and it is so tempting in the
honeymoon phase of a project to give in to expediency and get
on with the fun of making something. There has even been a
recent culture arise in the software community to rationalize
that defining requirements in advance is so difficult that one
should not even try, but instead should just iterate a design to
success. It is hard, but you will invariably rue the day that you
did not do it. It can be done. People have been doing it for
years in aerospace and other industries. Moreover, the painful
experience with iteration is that it is often a code word for
“throw it away and start over”. Most such projects will not
survive.

Functional requirements are then typically decomposed. Most
systems in practice must be implemented with an interacting
combination of several peer black boxes. Thus, it is common practice to
develop functional requirements for each of these subordinate entities.
Notice that this is still a black box perspective, but the requirements have
been allocated from the superior entity. Note also that while each
subordinate only addresses a subset of the superior’s requirements, the
mere task of decomposition introduces new inputs, outputs, and
environments for the subordinate. Each has to interface to its peers,
and invariably each has an environment that may be somewhat more
stringent that the superior. For example, a printed circuit board is
typically exposed to temperatures that are worse than the overall due to
peer heating.

Figure 1.2 Decomposition Hierarchy

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 9

Defining some terminology used in Figure 1.2, a subsystem is
simply a subordinate system, typically separately specified,
developed, and verified by an independent group. A
subassembly is just a collection of components, typically that
cannot function stand-alone. A component is just a piece part,
e.g., a resistor, a connector, a chassis, whatever. Note that
each level of assembly can be a mixture of all of these types.

Decomposition is the black magic in system design. Do
you split things into, say, four or seven subsystems? There is
no right answer, but the best advice is to keep interfaces as
simple as possible. The trick is to minimize the amount of
information that one has to pass among subsystems. In this
era of cheap computing, try to make each subsystem as self-
contained and self-sufficient as possible. Resist the temptation
to pass along information just because you can.

Most of the showstopper development issues that
subsequently surface will be due to a failure to
understand fully or, worse, to agreements to disagree on
these internal interfaces. Bugs are typically fixed in days,
but interface incompatibilities take weeks or months to resolve.
Managing interfaces between subsystems commonly uses
dedicated design documentation. Historically called Interface
Control Drawings (ICDs), their content is often managed by
Interface Control Working Groups (ICWG’s) made up of
participants from both sides of the interface as well as usually
some representatives responsible for the overall system. Most
commercial projects do not spend enough time on this activity.
The extreme formalism and dedicated staff of aerospace is
probably not warranted, but appropriate definition and
documentation is essential.

Functional specifications are the criteria for subsequent design
verification. This design verification is often called “qualification”.
These functional specifications enable an independent party to develop
qualification test plans and procedures including pass/fail criteria. Such
is often required in parallel with the actual design implementation since
test planning, fixtures, procedures, and software may be a non-trivial
development within themselves. Further, the black box view of such
tests invariably brings out missing or incomplete features overlooked
when one just tests the integrity of a specific solution.

The top system-level functional specification is the criteria for
formal design validation. Regulators invariably require such validation

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 10

by someone other than the system’s developers. By definition,
validation is a demonstration by a second party to confirm the objectives
of a verification performed by the development team. While this
seemingly duplicates the developer’s verification at the system level, the
difference in perspective, usually based on an independently developed
test plan/procedure, is worthwhile.

Lower-level functional specifications are the basis for procurement
of design services. While desirable as the basis for design verification,
such specifications are mandatory if one is to procure a non-catalog
design from an outside entity. Note that if one does not produce such
lower level functional specifications for internally designed entities, one
must instead perform the simultaneous verification of several unverified
peers at some higher level of assembly that does have such a functional
specification. If a design has any significant complexity, trying to resolve
defects and errors among unverified components is quite time
consuming and sometimes impossible due to ambiguities.

Lower-level specifications are also essential if reuse of the
subsystem is anticipated. If you are developing systems by
tailoring somewhat standardized subsystems, you particularly
need a detailed definition of what they currently do so you will
know how to reasonably define and charge for any needed
bells and whistles for each new customer application.

Product specifications are the basis for procurement of production
copies of the qualified designs. These specifications fully define the
requirements for production articles. As such, they are no longer a black
box view but describe the chosen solution in detail. These may not
need to be separate documents if the drawings and other technical data
fully describe the characteristics needed to produce and verify.
However, it is also common practice to collect the non-bill of material
and non-construction information in a textual document.

Specifications that define the solution are what most
engineers find comfortable to write, probably because they
are written after the fact when more is known. Unfortunately,
such does not provide any guarantee that the real functional
requirements have been met. It just describes what they built.

Product specifications are invariably written in terms of
tolerances, whereas functional specifications are written
as bounds. For example, a product specification might say
the item weighs 24 ± ¼ pound whereas the functional
specification would say it needs to weigh less than or equal to
25 pounds.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 11

Product Specifications are the basis for verifying the integrity of
production articles. This production verification is often called
“acceptance”. Note particularly that this is not re-verifying the design,
but rather its continuing production execution. As such, acceptance
inspections and tests are designed solely to verify errors in production:
cold solder joints, mis-oriented or missing components, weak insulation,
etc. For example, acceptance testing at end user operating
environments may well be too benign to induce the stresses needed to
weed out weak components and assembly shortcomings. However, as
with qualification, if product specifications do not exist, one must defer
the acceptance of an entity to some higher level of assembly that is
specified and verifiable. Deferring such testing may lead to higher
overall costs of production. One historical rule of thumb is that it costs a
factor of four more to discover and fix a defect at the each higher level of
assembly.

“Fail early” is a useful mantra to adopt. There is often a
tendency to defer substantial testing since it sounds like you
would save money by not duplicating a test at each higher
level of assembly. For example, one will encounter companies
who did not want to pay for substantial supplier test fixtures
and time. How they could then hold their suppliers
accountable for quality is beyond me. This mantra is likewise
applicable for qualification testing as well. The sooner you find
a bug, the cheaper it is to fix.

You can save a lot of money by not duplicating functional
tests per se as a part of acceptance. Remember, your
primary objective in an acceptance test is to find errors that are
unique to this particular serial number. It is often reasonable to
use selective functional tests to detect defects in production
and assembly as such may very well be the most expedient
screening mechanism, but the objective is different.

Verification & Validation

Verification can be by inspection, analysis, similarity, or test. What
is important is that one confirms the integrity of the design and of the
product. While qualification testing is common, it may be unnecessary if
the design is very similar to another previously verified or if well
established analysis techniques are applicable. Acceptance is usually
by inspection or test.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 12

Regardless of the method, documented evidence of the activity is
essential. Prettiness is not the issue. Handwritten notes in an
engineering notebook or memo for the record are perfectly adequate.
However, compiling such evidence for regulatory audits may be more of
a burden than producing them originally in a more organizable or fileable
form. Said another way, do not over-promise the form of documentation,
but rather focus on its organized retention and accessibility.

Reviews

Design reviews are one of the most common forms of verification
by inspection. These do not have to be formal meetings with all
stakeholders present in a single room. Simple peer reviews are much
more common, such as a software code walkthrough or an engineer’s
check of a drawing made by another designer. Walk around “desk
review and signoff” is also common. The main requirement for an
activity to constitute a review is the involvement of at least one party who
has no direct responsibility for the design under review. There is at least
an implicit requirement that this independent reviewer is competent,
typically an objective peer or a functional (not project) supervisor. In
addition, some evidence of resulting action items (or the lack thereof) is
minimally required. These can be as simple as annotations on a sign-off
sheet. Meetings that are more complex will also typically involve
minutes capturing any presented materials and summarizing the key
discussions of the review. Nevertheless, in very complex programs,
there are at least five formal reviews, sometimes called SDR, PDR,
CDR, FCA, and PCA. (Note that this aerospace terminology has
evolved, but the process basics are the same.)

If there is only one feature of aerospace system practice
that you can adopt, it should be design reviews. The most
notable results from reviews invariably arise more from
differences in perspective than from simply detecting mistakes.
Aerospace has the advantage of a culture of smart customers
performing excruciatingly formal reviews. The real reviews
were the internal dry runs, in order to make sure your
development team was not embarrassed by these customer
reviews. The dry runs were often rather brutal and demanding,
but it was not personal. The main point is that these internal
reviews invariably produced substantial observations. They
are worth the effort. However, do not confuse these reviews
with customer reviews where you are trying to prove the
system will work. In these internal reviews, you are trying to
prove that they will not.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 13

The most difficult part of establishing meaningful design
reviews is establishing the premise that this feedback is
professional, not personal. Many commercial developers,
particularly software programmers, just cannot accept this
concept. They view themselves as the expert, so it is
particularly egregious to have management involved. One
may lose as much as ¼ of the staff when establishing this
practice, even when the reviews are mainly by peers, but have
no regrets or hesitation. If they cannot explain and defend
their design, they will never be useful contributors to large-
scale systems.

A military concept called “completed staff work” provides
a sound basis for such reviews. One commonly encounters
engineers mostly wanting to describe their chosen solution.
The most effective question in a review is usually “why?” The
idea behind completed staff work is that you should prepare 3
to 5 alternative solutions, evaluate their pros and cons, and
explain your recommendation’s rationale. There are three
keys here: a.) more than one solution, b.) your
recommendation, and c.) its rationale. When your bosses
choose an alternative, it is invariably because of a difference in
perspective, not that they did not listen or that you were wrong.
The only time you should feel a bit embarrassed is if they
come up with an alternative that you did not even consider.

A System Design Review’s (SDR) objective is to concur on the
system’s top-level functional specification. Typically, conceptual
designs and results from feasibility studies are also reviewed to develop
confidence that at least one viable solution exists so that it is prudent to
initiate preliminary design.

A Preliminary Design Review’s (PDR) objective is to concur on the
decomposed functional requirements. As the name implies,
preliminary designs and/or the results of prototypes as well as initial risk
management activities are also typically reviewed. However, one is only
approving the hierarchy of functional specifications as to their
appropriateness, consistency, and completeness. In effect, you are
approving that it is prudent to begin detailed design activities.

Focusing a PDR onto the specifications, rather than onto
drawings, Graphical User Interfaces (GUIs), and the like, will
probably be the hardest culture shift in a commercial
environment. If you thought writing those truly functional
specifications was difficult, getting your customers to
understand that those specifications are what they should be

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 14

controlling is even harder. However, you will both be the better
for it. You will have more design leeway, and they will have
more control over what they really should be controlling.
Moreover, you will both have a legitimate basis for declaring
victory.

A Critical Design Review’s (CDR) objective is to concur on the
design outputs: detailed design drawings, bills of materials, product
specifications, test fixtures, software source code, and the
like…everything needed to procure and produce articles representative
of production that are suitable for use in qualification activities.

A Functional Configuration Audit’s (FCA) objective is to concur on
qualification. All evidence of the inspection, analysis, similarity, and
test activities are methodically assessed to confirm that all functional
requirements have been met. A traceability matrix is often used to
document completeness, although any methodical process may be used
to assure it is prudent to release the design outputs for volume
production.

Traceability matrices are often impractical given today’s
software design practices. In the old days, most design
used something called “functional decomposition”. The result
was that you could indeed trace a single high-level function
down into a single location in the software tree. One of many
problems with this approach is that it leads to excessive
(almost?) redundant code. Nowadays, there typically will be
several low level functions distributed throughout the system
needed to provide a single high-level response. A matrix that
is attempting to make a simple two-dimensional mapping of a
requirement to some low level test has lost its relevance.

A Production Configuration Audit’s (PCA) objective is to concur on
manufacturability. The suitability of procurement documents,
production tools, work instructions, acceptance test procedures, and the
like are confirmed to result in components, subassemblies, subsystems,
and systems that are fully compliant and consistent with the design
outputs that were previously qualified.

Regulatory entities, like the FDA, usually leave it to the discretion of
management to determine the number and timing of formal design
reviews. Typically, these would be specified as elements of each project
plan. While it is theoretically possible to run a very simple project with
no formal reviews, any project must somehow demonstrate that it has
met the objectives of all five of the formal reviews cited above.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 15

Analysis & Similarity

Technical analyses are a second broad class of design verification
activities. All the classical types of engineering analyses may be
involved: stress calculations, circuit timings, state diagrams, cost
estimates, tolerance stack-ups, statistical assessment of clinical data,
etc. When one’s confidence in the accuracy and precision of the
analysis method is combined with its predicted margin, often such
analysis is adequately prudent verification. That is, no further testing is
required.

Risk analysis is a special subclass of verification and is particularly
important in medical devices. One must methodically assess the
product as to the likelihood and to the severity of occurrence for hazards
and risks under all reasonably foreseeable circumstances, both for
normal and unplanned usage. Typical tools include Fault Tree Analysis
(FTA) and Failure Mode and Effects Analysis (FMEA).

For those risks deemed unacceptable, specific risk mitigation
actions must be planned, executed, and verified. Except for the
simpler projects that can incorporate these elements as part of the total
project planning, separate risk mitigation plans and verification are
usually provided to insure the requisite focus on safety related matters.

Compliance of the design outputs with company practices must
also be verified. Examples include compliance with coding style
standards, derating criteria, drawing style and dimensioning practices,
software design practices that assure extensibility and serviceability, etc.
These would typically be invoked by inference and verified by inspection;
these are not usually cited explicitly in functional specifications.
Regardless, one must be careful to invoke them explicitly in design
procurements.

Well-documented design practices are particularly helpful
in guiding younger or newer staff. It is very worthwhile to try
to capture some of the folklore and experience of your
company. Lessons learned cannot be leveraged unless
captured and taught. Later chapters include several examples.

Qualification may also be simply determined by an assessment of
similarity to an existing qualified design. Typically by inspection and
analysis, one must confirm both the technical similarity of the two
designs and the qualified and satisfactory usage status of the existing
design.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 16

While common in aerospace, qualifying by similarity is not
that common commercially. Such can save a lot of time and
money.

Test

Test is often erroneously used as a synonym for verification. In
fact, testing is only mandatory for validation. Verification is often more
effectively and efficiently performed by inspection, analysis, or similarity.
For example, it is usually more difficult, if not impossible, to cause
hardware and software to represent the limits of tolerance or fault
conditions. As such, practical considerations invariably lead to a
combination of tests, each of which only addresses a subset of the
environmental and functional requirements. Normally, testing is a last
resort that only addresses those specific issues where one lacks
confidence in the relevance or thoroughness of the other verification
methods.

Test to a plan, not just until you are tired. Those functional
specifications discussed earlier provide the missing basis for the test
plan. The problem with just allowing the developers to test their own
design is not that they are prone to cheat, but rather that they are
meticulous in testing for all the conditions that they made provisions for
in their design… but not necessarily the underlying requirements.

Corner coverage requires balance. Besides the practical
difficulty in forcing good hardware to its theoretical tolerance
limits, one must also be careful not to simultaneously force all
inputs to their extremes. Otherwise, you are testing for a set of
circumstances that will be both highly unlikely to ever occur
and very expensive to create. Just make sure the
combinations of variations are reasonable. Said another way,
test for so-called three-sigma cases, not nine-sigma.

Automated test tools, particularly for GUIs, are worth the
effort. These tools facilitate the thoroughness needed,
particularly for exception conditions. Your staff can
concentrate on adding exceptions, rather than boringly, and
thus sometimes sloppily, repeating inputs day after day.

Testing with emulators has its limits. When a team has
gone to the extra effort to develop or use emulators of their
peers, it can also be difficult to get them to let go and start
interfacing to the real thing. Timing issues and real data
dynamics will have unanticipated consequences. Exception

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 17

conditions are also difficult because they often must be
emulated, since it is difficult to force real hardware to its limit
conditions, but emulations will invariably also be somewhat
incomplete.

You will always regret trying to test more than one
untested item at a time. Finger pointing arises to a fine art
when neither party can prove that their component meets its
requirements, particularly with respect to interfaces.

Oversights in test planning are only a problem if you do not learn
from them. Despite your best efforts, you will still have defects and
bugs escape your factory into the field. No one is omniscient enough to
anticipate all exception conditions. Just make sure that every bug found
in the field leads to a corresponding change in your test procedures.
That is, not only fix the bug, but also fix the test that let the bug escape.

Test to break it, not demonstrate it. Most customer-witnessed testing
would be more appropriately labeled as demonstrations, except for the
social stigma that would accrue. However, the precursor internal tests
should be both ruthless and thorough. Said another way, the
demonstrations show that one has met the customer-specified
requirements, while your internal testing should be focused on exception
and off-nominal conditions to surface more subtle failure modes and
mechanisms.

Test early and every step of the way. Where feasible, one should test
at each level of assembly, working your way up from the bottom to the
top system level. At each level of assembly, over time, one likewise
works up the organizational structure. For example, the individual
developer or assembler performs some type of unit testing before
passing it on, usually to a device level test, then to an Engineering
integration test, and eventually to an independent test group. In turn, as
noted earlier, validation is then simply an independent test at the system
level by yet another independent group.

Keep Engineering responsible for the initial integration testing, at
least of complex systems. There is probably no better learning
experience for all engineers, young or old. They also need to remain
accountable for making their designs work. Unfortunately, some like to
try to leave this supposed clean-up activity to others. They will never
learn to detect and accommodate exception conditions without this
experience. One means to enforce this is by requiring Engineering
budgets for original design to include passing these initial Engineering
integration tests. That is, they cannot begin to spend the typical bug
fixing or sustaining engineering budgetary accounts until passing this

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 18

milestone. One means of lessening their objections is to give them a
free pass on any bugs that they find and fix at this stage, i.e., do not start
counting bugs in your publicized metrics until they handover their design
to an independent test group.

To reemphasize, testing usually should be a last resort and should
focus on exception conditions. Developers invariably focus on
proving that their system can indeed work. Unfortunately, it is often just
under their point design conditions. Most of the real world problems,
and, therefore typically more than half of most production software,
relates to gracefully handling error and off-nominal design conditions.

Barbie® Dolls

Most product-based capital goods industries are Barbie® doll
businesses. That is, you get what ever you can for the doll, but you
make all your profits from the clothes. In capital goods, the “clothes” are
replacement parts and service contracts. As such, development
activities should also focus on minimizing the costs associated with
servicing a system. With today’s technology, it is relatively inexpensive
to capture error codes in non-volatile memory so that your service staff
can find and pass on what the device thought was wrong as it was dying.
Otherwise, you will be faced with the historical issue of could not
duplicates (CNDs), retest O.K.’s (RTOKs), and no trouble found (NTFs)
back from your field staff as they repaired by remove and replace (R&R).
In fairness, R&R is about all that they can do without good error capture
and built-in diagnostics.

One should rarely buy a hardware maintenance
agreement. As long as there are no moving parts in the
product, most products today are very reliable. You can
reasonably gamble and only buy hardware maintenance
agreements when it becomes obvious that you bought a
lemon, or being more polite, an overly complex piece of
hardware. Such commonly occurs when one is an early
adopter. Otherwise, just pay time and material for Service.
While suppliers will often contend that they cannot guarantee
response times to non-contract buyers, they will invariably
respond as quickly as they can… which is all they will do even
with a contract.

At least you get new features with a software maintenance
contract. Yes, you also get the bug fixes that perhaps you
were due anyway, but the new features are usually worthwhile.
If you find your supplier fails to add substantial new

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 19

functionality, then drop their contract, but also do not expect
them to answer their phone when you call with a problem.
Their first words will invariably be, “Which version are you
running? Oh, then please bring yourself current and call back
if the problem still exists.”

Many vendors use the defacto industry-pricing model of about
20% of the software’s list price per year. In fact, the primary
reason for software list prices even to exist is to set the price of
the annual maintenance fee. You will find that almost every
hardware vendor will discount his or her original associated
software purchase price to whatever is needed to be the
winning bidder, including giving it away for free. However, they
will rarely negotiate their software maintenance prices since,
unlike hardware, these are rarely cash cows. As noted
elsewhere, the good news about software is that you can
change it. The bad news is that the market makes you change
it to stay competitive.

Consider offering to buy “used” hardware if it is the end of
a quarter, or, better yet, the end of the supplier’s fiscal year.
We were actually delivered new hardware almost every time.
This appears to be simply a ploy by suppliers to bypass their
“favored nation” purchasing agreements with large customers.
Those agreements typically have the supplier promising never
to sell the same product for less to another customer without
offering a credit to the “favored” customer.

Change Management

If you are in the system development business, the Barbie® doll’s
clothes are contract changes. With any reasonable complexity, there
is little historical precedent for assuming your basic contract will be
profitable. It is not an issue of whether you will overrun Engineering,
only about how much. Details will follow later in the discussion of earned
value. So, how does one do profitable development? The answer is in
your contract’s changes clause.

Detailed original specifications are the key to changes. Remember,
you have to have something specific to change from.

Usually, a superior document prevails when addressing conflicts,
but a subordinate document prevails regarding interpretation. That
is why we stressed the importance of including as much detail as

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 20

possible in subordinate functional specifications. For example, if your
lower level specification says your system has such and such behavior,
when your customer comes back with a request for doing it some other
way that is nicer or better or whatever, as long as your specified method
is a way that meets the top-level specification, you have a legitimate
claim for a change.

Be fair, but do not be a pushover. We are not advocating that you
“get well with changes” as the saying goes, but we are also saying that
one should not feel guilty about making the customer pay for his feature
creep. There will be feature creep.

Third Time’s the Charm

Experience suggests that it takes three attempts to get a product
right, particularly if it is software intensive. Many do not realize that
there was a Windows version 1 and a Windows v2. All that most are
likely to remember is Windows v3.1. Digital Research’s GEM was
originally much better and had most of the initial market share for
graphical user interfaces (GUIs) on PCs. However, Microsoft had the
resources (admittedly because of their cash cow, MS-DOS) to listen to
the marketplace and evolve the product to a market winner. Moreover,
despite all the latter day whining, Microsoft’s dominance of the word
processor and spreadsheet market was indeed because they created a
better mousetrap. In the early days, many bought Apple Macintosh’s in
order to get access to Microsoft’s new What You See Is What You Get
(WYSIWYG) Word and Excel applications.

The first version of anything rarely involves inputs from real
customers. They are primarily based either on wish lists from the
company’s Marketing department or are some bootleg demo out of
Engineering that Marketing thinks must be ready for production as it
understandably is in everyone’s interest to get something to market
quickly.

Strongly fend off any attempt to put a demo into production, even
as an initial product. Demos are just that, particularly if they were
developed for a big industry trade show. Primarily they lack the
exception handling code needed, but unfortunately, such is typically
much more than half of the code in a real product.

First products primarily get everyone useful feedback from real
users. It is not just about the GUIs, but mainly about what features are
really used and need enhancing and which are bells and whistles that
can be allowed to wither on the vine for a while. In addition, you will be

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

Project Systems Engineering 101

 21

inundated with exception conditions that your developers never
considered. The first hardware designs also are invariably not cost
effective to produce, from both a manufacturability and testability
perspective. They did not realize it, but these first customers were really
just beta testers.

Mainly, the second products are producible, profitable, and reliable.
These second products then get feedback from enough end users to
create a third, robust set of features that can dominate a market,
assuming good execution. They also usually include first attempts at
user configurability to try to get the developers out of the expense of
customizations, or to assuage customer pleas.

As an aside, when developing these second designs, one will
invariably find that the dominant effect on manufacturing costs
is piece parts count. Use manufacturing technologies that
minimize them. The dominant effect on electronic reliability is
invariably parts’ temperature, since reliability is a function of
the fourth power of junction temperature. Derate your parts,
and run them cold.

Finally, if you have been listening to customers, the third time is a
market winner.

Incumbents know their marketplace, so they can skip steps. While
it would be nice to think that they only needed one step, their first
attempts are still often not very producible, because they tend to be
dominated by engineering, and/or they tend to lack configurability, using
the excuse of a rush to market.

Incumbents know the myriad exception conditions experienced in
their applications. More than the functionality seen by end-users,
these exceptions are the unique lessons learned that they could
leverage to maintain their market edge.

Incumbents disappeared from the market mainly because they
could not let go of building specialized hardware. The problem was
not being a Smith-Corona failing to recognize the advent of word
processors that would displace their typewriters. The problem was being
a Wang or a Prime who would not introduce versions of their application
running on a PC until it was too late. They, and many others of their ilk,
had dominant market share, but they just never learned to compete with
themselves. If you do not learn to compete with yourself, then someone
else will.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

 22

The large dashed arrow in Figure 1.1 recognizes the inherent
iterative loop in the overall development process just discussed.
Therefore, our “linear” or “waterfall” process was implicitly iterative,
assuming the first version was enough of a commercial success to justify
another loop, based on feedback from the first pass through the design
process. The process is considered a waterfall because, conceptually,
each step is completed before the next is begun. In practice, there is
always some overlap and even iteration backwards as needed, e.g.,
when architectural problems are encountered.

More elaborate system engineering process models were evolving
by the eighties, such as the “spiral” developed by Boehm and the “Vee”
developed by Forsberg and Mooz. These elaborations tend to primarily
apply to systems of systems, typified by aerospace and defense, where
multiple iterations occur over many years before a “production” article
emerges. Similar iterative design schemes have arisen in the software
development community. As an admitted overstatement, these schemes
seem to advocate that requirements are so hard to determine that one
should just make a reasonable first cut and then iterate your way to
success. In effect, they seem to rationalize a build-and-redesign, rather
than a design-driven-by-requirements process.

Regardless, while most projects tend to implement in phases, the
author has never seen anyone successfully architect and design in
phases. To be applicable to commercial systems, one then will have to
be very cautious of these other development strategies to assure that a
sellable, useful product will result from each iteration. Again, following
the theme of staying focused on the basics, the simple waterfall model
presented herein will invariably suffice as a laudable objective.

In conclusion, the top-level functional requirements specification, the
design outputs needed to support production, evidence of validation, and
evidence of risk management are about the only mandatory items for
any project, large or small. Each project manager has the prerogative to
define which of these elements are suitable to combine for their specific
development. For example, SDRs are often combined with PDRs for
routine projects. Regardless, all of these objectives must be
demonstrably met. It is only their form that is subject to
management judgment.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME

