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Preface 
 
I have had the good fortune to be associated with the development of 
large-scale systems for over forty years.  These are products that are 
developed by more than one team, working in parallel, which must be 
interfaced and integrated together.  The point is not so much their 
physical size but the need to manage and integrate multiple efforts 
simultaneously.  Experience suggests that a single good lead engineer 
can indeed keep a design all in his head and direct a handful or so of 
engineers.  While that works for many games, web applications, and IT 
projects, it does not work for systems.  There are just too many people 
involved, in more than one team, and often not even co-located. 
 
I was particularly blessed to start my career as an R&D officer in the 
United States Air Force (USAF) in the timeframe when systems 
engineering was being formalized well by the Department of Defense 
(DOD), and the Air Force in particular, based on their good and bad 
experiences in the late fifties fielding Intercontinental Ballistic Missiles 
(ICBM’s).  As I moved out from aerospace into commercial 
developments, there was a learning curve on my part regarding how 
much of those aerospace processes and formalism were relevant in this 
seemingly different arena.  I soon concluded that those processes were 
key for any successful system development.  Only the formalism was 
negotiable or tailorable. 
 
I frequently found myself resurrecting some common threads of advice 
and direction as I moved among several industries and company 
organization types.  It did not seem to matter what we were making, or 
whether it was a large multi-national corporation or one with the founder 
still in sole control.  The engineering management issues were eerily the 
same.  I would pull out an earlier presentation or document, tweak a logo 
and a bit of text, and influence a new set of staff.  This book is a heavily 
edited and expanded compilation of those lessons re-taught over the 
years. 
 
You will find the advice is invariably basic, hence the titles ending in 
“101”.  The management problems encountered were because of a 
failure to understand or enforce those basics, and their enforcement is 
not easy.  In effect, experience says that your focus should always 
remain on these basics. 
 
I have intentionally tried to make this book easy to browse using a 
somewhat unique style that evolved over the years.  Most chapters use 
a bold-type opening sentence in each paragraph.  You can get the key 
assertions by just skimming them.  Those claims are elaborated in the 
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 viii 

rest of the paragraph.  If the reader is familiar with systems engineering 
terminology, that is probably sufficient.  If not, I have often followed with 
subsequent indented paragraphs that elaborate further. 
 
This book is likely most valuable to young engineers who are moving out 
of their academic specialty into engineering or project management, 
about which they probably were taught very little that was practical.  And, 
yes, I shoulder some of that blame myself since there is a stint of 
teaching graduate engineering school on my resume’.  The book is also 
intentionally succinct.  While we usually explain our rationale, rather than 
just assert, our intent is to provide the reader with cogent advice that 
they can quickly absorb and effectively apply.  As such, it should also 
serve as a useful quick reminder to more senior professionals, typically 
when they have been given a broadening assignment that forces them 
into new professional terrain. 
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1 

Introduction 

 
So, are you a young engineer that has been asked to become a lead for 
a team of specialists to work on a product or project that requires many 
different skills or even several teams?  Have you been a lead engineer 
but have now been asked to be a manager of your department?  Have 
you shown both the inclination and the capability to broaden out of your 
specialty to become a project or product development chief engineer or 
manager?  Have you managed projects or departments and now you 
have been asked to manage those managers?  In all these cases, you 
are confronting topics daily that they never taught you in school as you 
find yourself involved with managing the engineering of what are called 
“systems”. 
 
Managing the development of large-scale systems can be both fun and 
satisfying.  The U.S. Department of Defense (DOD), notably the Air 
Force (USAF), codified the methodology of such management in the late 
fifties and sixties in MIL-STD 499 and its ilk.  They took their lessons 
learned from fielding Intercontinental Ballistic Missiles and the like, both 
good and bad, and embodied them in processes that continued to 
mature.  Many engineers spent at least some of their career in 
aerospace and this systems culture.  However, since “peace broke out” 
in the early nineties, this opportunity for systems on-the-job training 
(OJT) has substantially diminished. 
 
This book addresses many of the key topics you will face in your 
expanded responsibilities.  There are good textbooks on the topic of 
systems engineering, but most still focus primarily on the very large 
systems of systems typical of aerospace and defense.  Further, as 
textbooks, they tend to focus understandably on the generic processes 
involved, primarily regarding the earlier phases of development.  
Regardless, several are cited in a closing section as candidates for 
additional reading.  Instead, this book focuses on specific practical 
advice to use when executing those processes in commercial 
environments.  In effect, our focus is on the practical mechanics of 
management.  As such, it can also provide an incisive refresher of useful 
tricks of the trade even for professionals in aerospace. 
 
While large commercial systems also existed, they were mostly the 
domain of mainframe computer developers until the eighties with its 
advent of the ubiquitous personal computer (PC).  Then the nineties saw 
the introduction of the World Wide Web (WWW) and a plethora of 
personal and business software applications of all sizes.  Further, PCs 
became so powerful that many, if not most, applications that used to 
require large computers or, more commonly, highly specialized and 
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 2 

customized electronic hardware could now run on these relatively cheap 
machines. 
 
Almost every capital goods industry saw their hardware commoditized to 
some degree with their products’ functionality provided mostly by 
software.  This commoditization of hardware was a watershed event as it 
meant that software development would become a critical asset (or 
heartache) for most every industry and product.  Moreover, large 
systems were routinely created using a collection of PCs, some evident 
and some embedded, but PCs nonetheless.  So, where did developers 
learn to put such commercial systems together?  Folklore said that 
aerospace processes were gross overkill with an excessive focus on 
paperwork. 
 
In addition to the regulated industries like nuclear and medical 
equipment that had done so previously, most companies in all industries 
formalized their system development processes in response to the 
pragmatically mandatory need to get themselves certified to the ISO-
9000 quality standard in the nineties.  Many made the mistake of over-
promising, particularly with respect to the paperwork, since they 
proposed to behave like they thought someone might have expected, 
rather than what they had always done.  Either they drowned in their 
own paperwork, or, more commonly, quickly lapsed into old habits and 
prayed an auditor would not show soon.  (The proper solution was to edit 
the procedures and processes to reflect what was reasonable.  
Generally, auditors do not tell you what you should do, but only if you are 
complying with what you said you should do.) 
 
As one who stumbled through some of those choices, my conclusion 
quickly became that, while one should tailor the formalism in a 
commercial environment, systems are systems, and the aerospace 
system engineering process basics remain the key to success 
anywhere.  While somewhat facetious, the section titles typically end in 
“101” because the basics are where your problems, and their solution, 
lie. 
 
Chapter 1 starts with a review of the key elements of the project systems 
engineering process.  While still the way of life in aerospace and 
defense, many engineers in commercial enterprises lack exposure to 
even the terminology of systems development.  This initial chapter 
provides that context along with practical advice regarding execution.  
Project/program planning is addressed in Chapter 2, as these plans, in 
effect, become the internal contracts between the various development 
groups and their management and customers.  In fact, it is hard to even 
claim that one is a manager without a plan, much less actually manage, 
rather than just react.  This section ends with Chapter 3 discussing 
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several topics to consider pragmatically during the various phases of a 
program or product’s lifecycle or evolution, notably at the beginning and 
at the end of a project. 
 
The next chapters address some of the key mechanics of managing 
systems development.  Since software is such a dominant part of any 
system nowadays, we start Chapter 4 with a set of very basic design 
practices that seem to be ignored or forgotten by developers.  These 
topics were taught in school, probably in their introductory courses, and 
staff usually resent being reminded.  However, they recur so often that 
they should remain your focus.  Chapter 5 recommends using clickable 
mockups to facilitate timely development of graphical user interfaces 
(GUIs) in products.  While admitting that they represent just one 
particular religious bias, we also include an example of GUI design 
practice rules.  We said “religious” because, like many other issues, 
there is no technical right or wrong involved, just a preference.  
Nevertheless, the benefit arises to your team because you state your 
belief, almost independent of its specifics. 
 
Chapter 6 moves away from managing software to using software to 
make presentations.  Every manager is also, some would say mostly, a 
salesperson.  While presentation style would seem to be the ultimate 
religious preference, we recommend that you become a zealot.  Very 
simple rules are recommended, and they work.  Chapter 7 implores and 
explains how to find and empty all the full in-boxes in your span of 
control.  Nothing you can do will improve responsiveness more.  Then, 
the process of Continuous Improvement is advocated and explained in 
Chapter 8, with practical examples from all operational departments. 
 
The next set of chapters address people-related topics since people are 
your means to success.  Chapters 9, 10, and 11 address performance 
ranking, incentive criteria, and matrix organizational structures, 
respectively.  These provide a succinct practical guide to these topics 
whose mechanics are rarely dealt with, except by osmosis. 
 
Finally, Chapter 12 offers success in improving your productivity with 
tools, provided you adapt your behavior to them, not vice versa. 
 
Closing remarks refresh our key advice.  Candidates for additional 
reading conclude the text. 
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Chapter 1 Project Systems Engineering 101 
 
Systems engineering is nothing new but rather a methodical perspective 
to organizing sound engineering practice in an auditable manner, even 
when only self-audited.  As shown in Figure 1.1, one can group 
engineering activities into five main categories: requirements, 
implementation, verification, validation, and record/evolve.  While 
reasonable professional practice in any case, members of regulated 
industries must document all such activities to enable external audit of 
their effectiveness and integrity. 
 
This chapter presents an overarching design process perspective and 
terminology, particularly for those readers with minimal exposure to 
aerospace and defense.  Interspersed throughout are pragmatic 
guidelines and recommended detailed practices.  The design process 
presented is a classical “linear” or “waterfall” scheme, which admittedly 
has lost its cachet, particularly among academics and large-scale 
systems of systems practitioners.  However, it still represents the 
foundational basics that will be central to your commercial success.  One 
would typically formalize a procedure and associated internal forms for 
each box shown in Figure 1.1, e.g., as part of an ISO-9000 certification.   
 
Administratively, the first step in the systems engineering process is the 
formal authorization of a project/product.  Part of that authorization is 
typically a project plan, which also provides a summary of resources 
required and schedules.  A subsequent chapter discusses planning in 
more detail.  Engineering has likely been involved with a project or 
product even earlier than this formal authorization event, typically 
spending sales and/or marketing budget supporting their development of 
draft specifications, conceptual prototypes, focus group mockups, and 
the like.  However, most companies understandably require a formal 
authorization event before any non-trivial sums are spent, usually 
whenever budgeted funds are first provided directly to engineering.  
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Figure 1.1  Key System Engineering Elements 
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Design Requirements 

 
Functional requirements start the systems engineering technical 
process.  Functional requirements have a “black box” perspective.  
That is, one should not be able to ascertain anything about a particular 
implementation.  “Form, fit and function” (F-cubed) is another 
common descriptor.  As this term implies, a functional specification 
addresses the inputs, outputs, transfer functions, environments, shape, 
other physical interfaces, signals and/or commands, other software or 
electronic interfaces, and the like. 

 
“Black box” is a common technical slang that implies the 
viewer is unable to see inside the box.  As such, all one can 
see is how the box behaves in processing its inputs to produce 
its outputs, just the functional perspective we need in these 
specifications.  For completeness, “white box” means you can 
see all the internal details.  This term is commonly used to 
describe software testing where one has had access to the 
creator’s source code. 
 
“That’s a solution, not a requirement” is probably the most 
common remark you will have to make when reviewing 
specifications.  Again, it seems to be part of the engineering 
psyche as it is independent of industry and even experience.  
Since these functional specifications (or design requirements 
documents, or whatever your company’s nomenclature) are 
often contractual, it is in your self-interest as the developer to 
retain as much design freedom as possible. 
 
Commercial customers love to specify solutions also.  
Gently push back and recast as a requirement. 
 

Ambiguity in a specification is always to the buyer’s advantage.  
Instead, as a developer, you need as much functional specifics as you 
can possibly define.  Naive staffs seem to think that if requirements are 
vague or silent, then they get to define what was meant after the fact.  
Just the opposite is true and is the major cause of feature-creep that has 
killed many projects, or at least made them painful for the developers.  
Remember, if the buyer does not believe that you could easily convince 
a third party that you were in compliance, they retain the ultimate control 
because they have yet to pay for your product or services.  The Golden 
Rule, “Whoever has the gold, rules”, only applies if they believe they 
would win in court. 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME



 8 

 
This functional specification is the key contract you are 
making with your bosses or your customer.  Developing 
these is not an easy proposition, and it is so tempting in the 
honeymoon phase of a project to give in to expediency and get 
on with the fun of making something.  There has even been a 
recent culture arise in the software community to rationalize 
that defining requirements in advance is so difficult that one 
should not even try, but instead should just iterate a design to 
success.  It is hard, but you will invariably rue the day that you 
did not do it.  It can be done.  People have been doing it for 
years in aerospace and other industries.  Moreover, the painful 
experience with iteration is that it is often a code word for 
“throw it away and start over”.  Most such projects will not 
survive. 
 

Functional requirements are then typically decomposed.  Most 
systems in practice must be implemented with an interacting 
combination of several peer black boxes.  Thus, it is common practice to 
develop functional requirements for each of these subordinate entities.  
Notice that this is still a black box perspective, but the requirements have 
been allocated from the superior entity.  Note also that while each 
subordinate only addresses a subset of the superior’s requirements, the 
mere task of decomposition introduces new inputs, outputs, and 
environments for the subordinate.  Each has to interface to its peers, 
and invariably each has an environment that may be somewhat more 
stringent that the superior.  For example, a printed circuit board is 
typically exposed to temperatures that are worse than the overall due to 
peer heating. 

 
 

Figure 1.2  Decomposition Hierarchy 
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Defining some terminology used in Figure 1.2, a subsystem is 
simply a subordinate system, typically separately specified, 
developed, and verified by an independent group.  A 
subassembly is just a collection of components, typically that 
cannot function stand-alone.  A component is just a piece part, 
e.g., a resistor, a connector, a chassis, whatever.  Note that 
each level of assembly can be a mixture of all of these types. 
 
Decomposition is the black magic in system design.  Do 
you split things into, say, four or seven subsystems?  There is 
no right answer, but the best advice is to keep interfaces as 
simple as possible.  The trick is to minimize the amount of 
information that one has to pass among subsystems.  In this 
era of cheap computing, try to make each subsystem as self-
contained and self-sufficient as possible.  Resist the temptation 
to pass along information just because you can. 
 
Most of the showstopper development issues that 
subsequently surface will be due to a failure to 
understand fully or, worse, to agreements to disagree on 
these internal interfaces.  Bugs are typically fixed in days, 
but interface incompatibilities take weeks or months to resolve.  
Managing interfaces between subsystems commonly uses 
dedicated design documentation.  Historically called Interface 
Control Drawings (ICDs), their content is often managed by 
Interface Control Working Groups (ICWG’s) made up of 
participants from both sides of the interface as well as usually 
some representatives responsible for the overall system.  Most 
commercial projects do not spend enough time on this activity.  
The extreme formalism and dedicated staff of aerospace is 
probably not warranted, but appropriate definition and 
documentation is essential. 
 

Functional specifications are the criteria for subsequent design 
verification.  This design verification is often called “qualification”.  
These functional specifications enable an independent party to develop 
qualification test plans and procedures including pass/fail criteria.  Such 
is often required in parallel with the actual design implementation since 
test planning, fixtures, procedures, and software may be a non-trivial 
development within themselves.  Further, the black box view of such 
tests invariably brings out missing or incomplete features overlooked 
when one just tests the integrity of a specific solution. 
 
The top system-level functional specification is the criteria for 
formal design validation.  Regulators invariably require such validation 
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 10 

by someone other than the system’s developers.  By definition, 
validation is a demonstration by a second party to confirm the objectives 
of a verification performed by the development team.  While this 
seemingly duplicates the developer’s verification at the system level, the 
difference in perspective, usually based on an independently developed 
test plan/procedure, is worthwhile. 
 
Lower-level functional specifications are the basis for procurement 
of design services.  While desirable as the basis for design verification, 
such specifications are mandatory if one is to procure a non-catalog 
design from an outside entity.  Note that if one does not produce such 
lower level functional specifications for internally designed entities, one 
must instead perform the simultaneous verification of several unverified 
peers at some higher level of assembly that does have such a functional 
specification.  If a design has any significant complexity, trying to resolve 
defects and errors among unverified components is quite time 
consuming and sometimes impossible due to ambiguities. 
 

Lower-level specifications are also essential if reuse of the 
subsystem is anticipated.  If you are developing systems by 
tailoring somewhat standardized subsystems, you particularly 
need a detailed definition of what they currently do so you will 
know how to reasonably define and charge for any needed 
bells and whistles for each new customer application. 

 
Product specifications are the basis for procurement of production 
copies of the qualified designs.  These specifications fully define the 
requirements for production articles.  As such, they are no longer a black 
box view but describe the chosen solution in detail.  These may not 
need to be separate documents if the drawings and other technical data 
fully describe the characteristics needed to produce and verify.  
However, it is also common practice to collect the non-bill of material 
and non-construction information in a textual document. 

 
Specifications that define the solution are what most 
engineers find comfortable to write, probably because they 
are written after the fact when more is known.  Unfortunately, 
such does not provide any guarantee that the real functional 
requirements have been met.  It just describes what they built. 
 
Product specifications are invariably written in terms of 
tolerances, whereas functional specifications are written 
as bounds.  For example, a product specification might say 
the item weighs 24 ± ¼ pound whereas the functional 
specification would say it needs to weigh less than or equal to 
25 pounds. 
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Product Specifications are the basis for verifying the integrity of 
production articles.  This production verification is often called 
“acceptance”.  Note particularly that this is not re-verifying the design, 
but rather its continuing production execution.  As such, acceptance 
inspections and tests are designed solely to verify errors in production: 
cold solder joints, mis-oriented or missing components, weak insulation, 
etc.  For example, acceptance testing at end user operating 
environments may well be too benign to induce the stresses needed to 
weed out weak components and assembly shortcomings.  However, as 
with qualification, if product specifications do not exist, one must defer 
the acceptance of an entity to some higher level of assembly that is 
specified and verifiable.  Deferring such testing may lead to higher 
overall costs of production.  One historical rule of thumb is that it costs a 
factor of four more to discover and fix a defect at the each higher level of 
assembly. 

 
“Fail early” is a useful mantra to adopt.  There is often a 
tendency to defer substantial testing since it sounds like you 
would save money by not duplicating a test at each higher 
level of assembly.  For example, one will encounter companies 
who did not want to pay for substantial supplier test fixtures 
and time.  How they could then hold their suppliers 
accountable for quality is beyond me.  This mantra is likewise 
applicable for qualification testing as well.  The sooner you find 
a bug, the cheaper it is to fix. 
 
You can save a lot of money by not duplicating functional 
tests per se as a part of acceptance.  Remember, your 
primary objective in an acceptance test is to find errors that are 
unique to this particular serial number.  It is often reasonable to 
use selective functional tests to detect defects in production 
and assembly as such may very well be the most expedient 
screening mechanism, but the objective is different. 
 

Verification & Validation 

 
Verification can be by inspection, analysis, similarity, or test.  What 
is important is that one confirms the integrity of the design and of the 
product.  While qualification testing is common, it may be unnecessary if 
the design is very similar to another previously verified or if well 
established analysis techniques are applicable.  Acceptance is usually 
by inspection or test. 
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Regardless of the method, documented evidence of the activity is 
essential.  Prettiness is not the issue.  Handwritten notes in an 
engineering notebook or memo for the record are perfectly adequate.  
However, compiling such evidence for regulatory audits may be more of 
a burden than producing them originally in a more organizable or fileable 
form.  Said another way, do not over-promise the form of documentation, 
but rather focus on its organized retention and accessibility. 
 

Reviews 

 
Design reviews are one of the most common forms of verification 
by inspection.  These do not have to be formal meetings with all 
stakeholders present in a single room.  Simple peer reviews are much 
more common, such as a software code walkthrough or an engineer’s 
check of a drawing made by another designer.  Walk around “desk 
review and signoff” is also common.  The main requirement for an 
activity to constitute a review is the involvement of at least one party who 
has no direct responsibility for the design under review.  There is at least 
an implicit requirement that this independent reviewer is competent, 
typically an objective peer or a functional (not project) supervisor.  In 
addition, some evidence of resulting action items (or the lack thereof) is 
minimally required.  These can be as simple as annotations on a sign-off 
sheet.  Meetings that are more complex will also typically involve 
minutes capturing any presented materials and summarizing the key 
discussions of the review.  Nevertheless, in very complex programs, 
there are at least five formal reviews, sometimes called SDR, PDR, 
CDR, FCA, and PCA.  (Note that this aerospace terminology has 
evolved, but the process basics are the same.) 
 

If there is only one feature of aerospace system practice 
that you can adopt, it should be design reviews.  The most 
notable results from reviews invariably arise more from 
differences in perspective than from simply detecting mistakes.  
Aerospace has the advantage of a culture of smart customers 
performing excruciatingly formal reviews.  The real reviews 
were the internal dry runs, in order to make sure your 
development team was not embarrassed by these customer 
reviews.  The dry runs were often rather brutal and demanding, 
but it was not personal.  The main point is that these internal 
reviews invariably produced substantial observations.  They 
are worth the effort.  However, do not confuse these reviews 
with customer reviews where you are trying to prove the 
system will work.  In these internal reviews, you are trying to 
prove that they will not. 
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The most difficult part of establishing meaningful design 
reviews is establishing the premise that this feedback is 
professional, not personal.  Many commercial developers, 
particularly software programmers, just cannot accept this 
concept.  They view themselves as the expert, so it is 
particularly egregious to have management involved.  One 
may lose as much as ¼ of the staff when establishing this 
practice, even when the reviews are mainly by peers, but have 
no regrets or hesitation.  If they cannot explain and defend 
their design, they will never be useful contributors to large-
scale systems. 
 
A military concept called “completed staff work” provides 
a sound basis for such reviews.  One commonly encounters 
engineers mostly wanting to describe their chosen solution.  
The most effective question in a review is usually “why?”  The 
idea behind completed staff work is that you should prepare 3 
to 5 alternative solutions, evaluate their pros and cons, and 
explain your recommendation’s rationale.  There are three 
keys here: a.) more than one solution, b.) your 
recommendation, and c.) its rationale.  When your bosses 
choose an alternative, it is invariably because of a difference in 
perspective, not that they did not listen or that you were wrong.  
The only time you should feel a bit embarrassed is if they 
come up with an alternative that you did not even consider. 
 

A System Design Review’s (SDR) objective is to concur on the 
system’s top-level functional specification.  Typically, conceptual 
designs and results from feasibility studies are also reviewed to develop 
confidence that at least one viable solution exists so that it is prudent to 
initiate preliminary design. 
 
A Preliminary Design Review’s (PDR) objective is to concur on the 
decomposed functional requirements.  As the name implies, 
preliminary designs and/or the results of prototypes as well as initial risk 
management activities are also typically reviewed.  However, one is only 
approving the hierarchy of functional specifications as to their 
appropriateness, consistency, and completeness.  In effect, you are 
approving that it is prudent to begin detailed design activities. 
 

Focusing a PDR onto the specifications, rather than onto 
drawings, Graphical User Interfaces (GUIs), and the like, will 
probably be the hardest culture shift in a commercial 
environment.  If you thought writing those truly functional 
specifications was difficult, getting your customers to 
understand that those specifications are what they should be 

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Cop
yri

gh
t A

SME



 14 

controlling is even harder.  However, you will both be the better 
for it.  You will have more design leeway, and they will have 
more control over what they really should be controlling.  
Moreover, you will both have a legitimate basis for declaring 
victory. 
 

A Critical Design Review’s (CDR) objective is to concur on the 
design outputs:  detailed design drawings, bills of materials, product 
specifications, test fixtures, software source code, and the 
like…everything needed to procure and produce articles representative 
of production that are suitable for use in qualification activities. 
 
A Functional Configuration Audit’s (FCA) objective is to concur on 
qualification.  All evidence of the inspection, analysis, similarity, and 
test activities are methodically assessed to confirm that all functional 
requirements have been met.  A traceability matrix is often used to 
document completeness, although any methodical process may be used 
to assure it is prudent to release the design outputs for volume 
production. 
 

Traceability matrices are often impractical given today’s 
software design practices.  In the old days, most design 
used something called “functional decomposition”.  The result 
was that you could indeed trace a single high-level function 
down into a single location in the software tree.  One of many 
problems with this approach is that it leads to excessive 
(almost?) redundant code.  Nowadays, there typically will be 
several low level functions distributed throughout the system 
needed to provide a single high-level response.  A matrix that 
is attempting to make a simple two-dimensional mapping of a 
requirement to some low level test has lost its relevance. 
 

A Production Configuration Audit’s (PCA) objective is to concur on 
manufacturability.  The suitability of procurement documents, 
production tools, work instructions, acceptance test procedures, and the 
like are confirmed to result in components, subassemblies, subsystems, 
and systems that are fully compliant and consistent with the design 
outputs that were previously qualified. 
 
Regulatory entities, like the FDA, usually leave it to the discretion of 
management to determine the number and timing of formal design 
reviews.  Typically, these would be specified as elements of each project 
plan.  While it is theoretically possible to run a very simple project with 
no formal reviews, any project must somehow demonstrate that it has 
met the objectives of all five of the formal reviews cited above. 
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Analysis & Similarity 

 
Technical analyses are a second broad class of design verification 
activities.  All the classical types of engineering analyses may be 
involved: stress calculations, circuit timings, state diagrams, cost 
estimates, tolerance stack-ups, statistical assessment of clinical data, 
etc.  When one’s confidence in the accuracy and precision of the 
analysis method is combined with its predicted margin, often such 
analysis is adequately prudent verification.  That is, no further testing is 
required. 

 
Risk analysis is a special subclass of verification and is particularly 
important in medical devices.  One must methodically assess the 
product as to the likelihood and to the severity of occurrence for hazards 
and risks under all reasonably foreseeable circumstances, both for 
normal and unplanned usage.  Typical tools include Fault Tree Analysis 
(FTA) and Failure Mode and Effects Analysis (FMEA). 
 
For those risks deemed unacceptable, specific risk mitigation 
actions must be planned, executed, and verified.  Except for the 
simpler projects that can incorporate these elements as part of the total 
project planning, separate risk mitigation plans and verification are 
usually provided to insure the requisite focus on safety related matters. 
 
Compliance of the design outputs with company practices must 
also be verified.  Examples include compliance with coding style 
standards, derating criteria, drawing style and dimensioning practices, 
software design practices that assure extensibility and serviceability, etc.  
These would typically be invoked by inference and verified by inspection; 
these are not usually cited explicitly in functional specifications.  
Regardless, one must be careful to invoke them explicitly in design 
procurements. 
 

Well-documented design practices are particularly helpful 
in guiding younger or newer staff.  It is very worthwhile to try 
to capture some of the folklore and experience of your 
company.  Lessons learned cannot be leveraged unless 
captured and taught.  Later chapters include several examples. 
 

Qualification may also be simply determined by an assessment of 
similarity to an existing qualified design.  Typically by inspection and 
analysis, one must confirm both the technical similarity of the two 
designs and the qualified and satisfactory usage status of the existing 
design. 
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While common in aerospace, qualifying by similarity is not 
that common commercially.  Such can save a lot of time and 
money. 
 

Test 

 
Test is often erroneously used as a synonym for verification.  In 
fact, testing is only mandatory for validation.  Verification is often more 
effectively and efficiently performed by inspection, analysis, or similarity.  
For example, it is usually more difficult, if not impossible, to cause 
hardware and software to represent the limits of tolerance or fault 
conditions.  As such, practical considerations invariably lead to a 
combination of tests, each of which only addresses a subset of the 
environmental and functional requirements.  Normally, testing is a last 
resort that only addresses those specific issues where one lacks 
confidence in the relevance or thoroughness of the other verification 
methods. 
 
Test to a plan, not just until you are tired.  Those functional 
specifications discussed earlier provide the missing basis for the test 
plan.  The problem with just allowing the developers to test their own 
design is not that they are prone to cheat, but rather that they are 
meticulous in testing for all the conditions that they made provisions for 
in their design… but not necessarily the underlying requirements. 

 
Corner coverage requires balance.  Besides the practical 
difficulty in forcing good hardware to its theoretical tolerance 
limits, one must also be careful not to simultaneously force all 
inputs to their extremes.  Otherwise, you are testing for a set of 
circumstances that will be both highly unlikely to ever occur 
and very expensive to create.  Just make sure the 
combinations of variations are reasonable.  Said another way, 
test for so-called three-sigma cases, not nine-sigma.  
 
Automated test tools, particularly for GUIs, are worth the 
effort.  These tools facilitate the thoroughness needed, 
particularly for exception conditions.  Your staff can 
concentrate on adding exceptions, rather than boringly, and 
thus sometimes sloppily, repeating inputs day after day.  
 
Testing with emulators has its limits.  When a team has 
gone to the extra effort to develop or use emulators of their 
peers, it can also be difficult to get them to let go and start 
interfacing to the real thing.  Timing issues and real data 
dynamics will have unanticipated consequences.  Exception 
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conditions are also difficult because they often must be 
emulated, since it is difficult to force real hardware to its limit 
conditions, but emulations will invariably also be somewhat 
incomplete. 
 
You will always regret trying to test more than one 
untested item at a time.  Finger pointing arises to a fine art 
when neither party can prove that their component meets its 
requirements, particularly with respect to interfaces.  
 

Oversights in test planning are only a problem if you do not learn 
from them.  Despite your best efforts, you will still have defects and 
bugs escape your factory into the field.  No one is omniscient enough to 
anticipate all exception conditions.  Just make sure that every bug found 
in the field leads to a corresponding change in your test procedures.  
That is, not only fix the bug, but also fix the test that let the bug escape. 
 
Test to break it, not demonstrate it.  Most customer-witnessed testing 
would be more appropriately labeled as demonstrations, except for the 
social stigma that would accrue.  However, the precursor internal tests 
should be both ruthless and thorough.  Said another way, the 
demonstrations show that one has met the customer-specified 
requirements, while your internal testing should be focused on exception 
and off-nominal conditions to surface more subtle failure modes and 
mechanisms. 
 
Test early and every step of the way.  Where feasible, one should test 
at each level of assembly, working your way up from the bottom to the 
top system level.  At each level of assembly, over time, one likewise 
works up the organizational structure.  For example, the individual 
developer or assembler performs some type of unit testing before 
passing it on, usually to a device level test, then to an Engineering 
integration test, and eventually to an independent test group.  In turn, as 
noted earlier, validation is then simply an independent test at the system 
level by yet another independent group. 
 
Keep Engineering responsible for the initial integration testing, at 
least of complex systems.  There is probably no better learning 
experience for all engineers, young or old.  They also need to remain 
accountable for making their designs work.  Unfortunately, some like to 
try to leave this supposed clean-up activity to others.  They will never 
learn to detect and accommodate exception conditions without this 
experience.  One means to enforce this is by requiring Engineering 
budgets for original design to include passing these initial Engineering 
integration tests.  That is, they cannot begin to spend the typical bug 
fixing or sustaining engineering budgetary accounts until passing this 
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milestone.  One means of lessening their objections is to give them a 
free pass on any bugs that they find and fix at this stage, i.e., do not start 
counting bugs in your publicized metrics until they handover their design 
to an independent test group. 
 
To reemphasize, testing usually should be a last resort and should 
focus on exception conditions.  Developers invariably focus on 
proving that their system can indeed work.  Unfortunately, it is often just 
under their point design conditions.  Most of the real world problems, 
and, therefore typically more than half of most production software, 
relates to gracefully handling error and off-nominal design conditions. 
 

Barbie® Dolls 

 
Most product-based capital goods industries are Barbie® doll 
businesses.  That is, you get what ever you can for the doll, but you 
make all your profits from the clothes.  In capital goods, the “clothes” are 
replacement parts and service contracts.  As such, development 
activities should also focus on minimizing the costs associated with 
servicing a system.  With today’s technology, it is relatively inexpensive 
to capture error codes in non-volatile memory so that your service staff 
can find and pass on what the device thought was wrong as it was dying.  
Otherwise, you will be faced with the historical issue of could not 
duplicates (CNDs), retest O.K.’s (RTOKs), and no trouble found (NTFs) 
back from your field staff as they repaired by remove and replace (R&R).  
In fairness, R&R is about all that they can do without good error capture 
and built-in diagnostics. 
 

One should rarely buy a hardware maintenance 
agreement.  As long as there are no moving parts in the 
product, most products today are very reliable.  You can 
reasonably gamble and only buy hardware maintenance 
agreements when it becomes obvious that you bought a 
lemon, or being more polite, an overly complex piece of 
hardware.  Such commonly occurs when one is an early 
adopter.  Otherwise, just pay time and material for Service.  
While suppliers will often contend that they cannot guarantee 
response times to non-contract buyers, they will invariably 
respond as quickly as they can… which is all they will do even 
with a contract. 
 
At least you get new features with a software maintenance 
contract.  Yes, you also get the bug fixes that perhaps you 
were due anyway, but the new features are usually worthwhile.  
If you find your supplier fails to add substantial new 
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functionality, then drop their contract, but also do not expect 
them to answer their phone when you call with a problem.  
Their first words will invariably be, “Which version are you 
running?  Oh, then please bring yourself current and call back 
if the problem still exists.” 
 
Many vendors use the defacto industry-pricing model of about 
20% of the software’s list price per year.  In fact, the primary 
reason for software list prices even to exist is to set the price of 
the annual maintenance fee.  You will find that almost every 
hardware vendor will discount his or her original associated 
software purchase price to whatever is needed to be the 
winning bidder, including giving it away for free.  However, they 
will rarely negotiate their software maintenance prices since, 
unlike hardware, these are rarely cash cows.  As noted 
elsewhere, the good news about software is that you can 
change it.  The bad news is that the market makes you change 
it to stay competitive. 
 
Consider offering to buy “used” hardware if it is the end of 
a quarter, or, better yet, the end of the supplier’s fiscal year.  
We were actually delivered new hardware almost every time.  
This appears to be simply a ploy by suppliers to bypass their 
“favored nation” purchasing agreements with large customers.  
Those agreements typically have the supplier promising never 
to sell the same product for less to another customer without 
offering a credit to the “favored” customer. 
 

Change Management 

 
If you are in the system development business, the Barbie® doll’s 
clothes are contract changes.  With any reasonable complexity, there 
is little historical precedent for assuming your basic contract will be 
profitable.  It is not an issue of whether you will overrun Engineering, 
only about how much.  Details will follow later in the discussion of earned 
value.  So, how does one do profitable development?  The answer is in 
your contract’s changes clause. 
 
Detailed original specifications are the key to changes.  Remember, 
you have to have something specific to change from. 
 
Usually, a superior document prevails when addressing conflicts, 
but a subordinate document prevails regarding interpretation.  That 
is why we stressed the importance of including as much detail as 
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possible in subordinate functional specifications.  For example, if your 
lower level specification says your system has such and such behavior, 
when your customer comes back with a request for doing it some other 
way that is nicer or better or whatever, as long as your specified method 
is a way that meets the top-level specification, you have a legitimate 
claim for a change. 
 
Be fair, but do not be a pushover.  We are not advocating that you 
“get well with changes” as the saying goes, but we are also saying that 
one should not feel guilty about making the customer pay for his feature 
creep.  There will be feature creep. 
 

Third Time’s the Charm 

 
Experience suggests that it takes three attempts to get a product 
right, particularly if it is software intensive.  Many do not realize that 
there was a Windows version 1 and a Windows v2.  All that most are 
likely to remember is Windows v3.1.  Digital Research’s GEM was 
originally much better and had most of the initial market share for 
graphical user interfaces (GUIs) on PCs.  However, Microsoft had the 
resources (admittedly because of their cash cow, MS-DOS) to listen to 
the marketplace and evolve the product to a market winner.  Moreover, 
despite all the latter day whining, Microsoft’s dominance of the word 
processor and spreadsheet market was indeed because they created a 
better mousetrap.  In the early days, many bought Apple Macintosh’s in 
order to get access to Microsoft’s new What You See Is What You Get 
(WYSIWYG) Word and Excel applications. 
 
The first version of anything rarely involves inputs from real 
customers.  They are primarily based either on wish lists from the 
company’s Marketing department or are some bootleg demo out of 
Engineering that Marketing thinks must be ready for production as it 
understandably is in everyone’s interest to get something to market 
quickly. 
 
Strongly fend off any attempt to put a demo into production, even 
as an initial product.  Demos are just that, particularly if they were 
developed for a big industry trade show.  Primarily they lack the 
exception handling code needed, but unfortunately, such is typically 
much more than half of the code in a real product. 
 
First products primarily get everyone useful feedback from real 
users.  It is not just about the GUIs, but mainly about what features are 
really used and need enhancing and which are bells and whistles that 
can be allowed to wither on the vine for a while.  In addition, you will be 
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inundated with exception conditions that your developers never 
considered.  The first hardware designs also are invariably not cost 
effective to produce, from both a manufacturability and testability 
perspective.  They did not realize it, but these first customers were really 
just beta testers.   
 
Mainly, the second products are producible, profitable, and reliable.  
These second products then get feedback from enough end users to 
create a third, robust set of features that can dominate a market, 
assuming good execution.  They also usually include first attempts at 
user configurability to try to get the developers out of the expense of 
customizations, or to assuage customer pleas. 
 

As an aside, when developing these second designs, one will 
invariably find that the dominant effect on manufacturing costs 
is piece parts count.  Use manufacturing technologies that 
minimize them.  The dominant effect on electronic reliability is 
invariably parts’ temperature, since reliability is a function of 
the fourth power of junction temperature.  Derate your parts, 
and run them cold.     

 
Finally, if you have been listening to customers, the third time is a 
market winner. 
 
Incumbents know their marketplace, so they can skip steps.  While 
it would be nice to think that they only needed one step, their first 
attempts are still often not very producible, because they tend to be 
dominated by engineering, and/or they tend to lack configurability, using 
the excuse of a rush to market. 
 
Incumbents know the myriad exception conditions experienced in 
their applications.  More than the functionality seen by end-users, 
these exceptions are the unique lessons learned that they could 
leverage to maintain their market edge. 
 
Incumbents disappeared from the market mainly because they 
could not let go of building specialized hardware.  The problem was 
not being a Smith-Corona failing to recognize the advent of word 
processors that would displace their typewriters.  The problem was being 
a Wang or a Prime who would not introduce versions of their application 
running on a PC until it was too late.  They, and many others of their ilk, 
had dominant market share, but they just never learned to compete with 
themselves.  If you do not learn to compete with yourself, then someone 
else will. 
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The large dashed arrow in Figure 1.1 recognizes the inherent 
iterative loop in the overall development process just discussed.  
Therefore, our “linear” or “waterfall” process was implicitly iterative, 
assuming the first version was enough of a commercial success to justify 
another loop, based on feedback from the first pass through the design 
process.  The process is considered a waterfall because, conceptually, 
each step is completed before the next is begun.  In practice, there is 
always some overlap and even iteration backwards as needed, e.g., 
when architectural problems are encountered. 
 
More elaborate system engineering process models were evolving 
by the eighties, such as the “spiral” developed by Boehm and the “Vee” 
developed by Forsberg and Mooz.  These elaborations tend to primarily 
apply to systems of systems, typified by aerospace and defense, where 
multiple iterations occur over many years before a “production” article 
emerges.  Similar iterative design schemes have arisen in the software 
development community.  As an admitted overstatement, these schemes 
seem to advocate that requirements are so hard to determine that one 
should just make a reasonable first cut and then iterate your way to 
success.  In effect, they seem to rationalize a build-and-redesign, rather 
than a design-driven-by-requirements process. 
 
Regardless, while most projects tend to implement in phases, the 
author has never seen anyone successfully architect and design in 
phases.  To be applicable to commercial systems, one then will have to 
be very cautious of these other development strategies to assure that a 
sellable, useful product will result from each iteration.  Again, following 
the theme of staying focused on the basics, the simple waterfall model 
presented herein will invariably suffice as a laudable objective.     
 
 
In conclusion, the top-level functional requirements specification, the 
design outputs needed to support production, evidence of validation, and 
evidence of risk management are about the only mandatory items for 
any project, large or small.  Each project manager has the prerogative to 
define which of these elements are suitable to combine for their specific 
development.  For example, SDRs are often combined with PDRs for 
routine projects.  Regardless, all of these objectives must be 
demonstrably met.  It is only their form that is subject to 
management judgment. 
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