Reliability Aspects of Connected and Autonomous Vehicles

Vasiliy Krivtsov, PhD
Director of Reliability Analytics
The Ford Motor Company
vkrivtso@ford.com

Adjunct Professor of Reliability
The University of Maryland
krivtsov@umd.edu

Congressional Debrief
30 October 2019
Why Transportation Needs to Evolve

In this rapidly changing world, cities are growing fast. With urban centers dealing with record levels of traffic and pollution, the United Nations has identified increasing urbanization as one of the defining trends of the 21st century.

This growth is also causing a shift from individual vehicle ownership to the use of shared mobility options such as ride-hailing services. Most of our infrastructure was built to meet the needs of individually used vehicles. However, most of those vehicles sit idle about 95% of the time. As a result of this, as much as 30% of the real estate in city centers is devoted to parking.¹

At Ford, we see this as an opportunity to design smart vehicles for a smart world. If applied correctly, new technologies can enable solutions to help city transportation systems improve the quality of life for everyone. That’s why we’re approaching these opportunities in a holistic way. We recognize that just injecting new mobility technologies and services into a city or neighborhood won’t solve their existing challenges and may even make them worse.

Therefore, we created a City Solutions team dedicated to working closely with cities and communities to address these challenges. We’re learning how each city works, what its needs are and how our technology can adapt and support each city’s unique transportation system. We’re developing a portfolio of solutions that can help a city improve its transportation system through better orchestration of traffic, transit and the ever-growing mobility options emerging every day.

Self-driving vehicles are one of the solutions to help enable this future. Ford is designing them to operate as a productive, safe and valuable part of a city transportation system to help make people’s lives better.

Ensuring Reliability through Redundancy

Diagnostics and Vehicle Health Monitoring
A sophisticated vehicle health monitoring strategy employs diagnostics integrated across multiple systems within the vehicle to determine vehicle health and perform fallback maneuvers when needed. In addition to diagnostics, we also monitor the vehicle to determine its readiness, such as if all doors are closed.

Backup Autonomous Driving System
The Virtual Driver System has both main and backup computing systems. These two computers operate simultaneously while sharing information yet are on separate power distribution networks. If a failure occurs, the backup system will bring the vehicle to a controlled stop. In addition, communication between the sensors, computers, and actuators have an alternate path in the event of failure on the main system.

Electrical Power Systems
While main power to the vehicle is provided from the high voltage battery, there are backup electrical power sources and distribution to several critical components. In the case of a power failure, the backup power nets are able to provide low voltage power to the computers, sensors, braking and steering systems to bring the vehicle to a controlled stop.

Redundant Braking and Steering Systems
Backup braking and steering systems exist on separate power distribution networks. This redundancy allows the system to bring the vehicle to a controlled stop if a system fails.
ADAS Redundancy Modelling | Classical RBD Representation

System Reliability Model:

\[R_S(t) = R_{SWA\rightarrow B} R_A(t) \]
\[+ \int_0^t f_A(x_A) R_{SWA\rightarrow B} R_B(t-x_A) dx_A \]
\[+ \int_0^t f_A(x_A) \int_{x_A}^t f_B(x_B) R_{SWB\rightarrow C} dx_A dx_B \]
\[+ \int_0^t f_A(x_A) f_B(x_B) \int_{x_B}^t f_C(x_C) R_{SWC\rightarrow D} dx_A dx_B dx_C \]

Design Life Implications

- Usage rate of average conventional passenger cars is 5%
- This translates into 72 mins in 24 hrs
- In a mixed, primarily urban duty cycle, with 30 MPH average speed, this further translates into ~13,140 miles/year
- Current design life target: 10YIS|150K (90th percentile)

- Usage rate of ride sharing and autonomous cars is expected to be (at least) 75%
- This translates into 1,080 mins in 24 hrs
- In a mixed, primarily urban duty cycle, with 30 MPH average speed, this further translates into 197,100 miles/year
- What should be design life target then?

Advanced Diagnostics & Vehicle Health Monitoring
A Virtual Sensor for Brake Pad Thickness

Brake pad wear is proportional to the consumed kinetic energy during a breaking event

\[\Delta W \propto \frac{m(V_1^2 - V_2^2)}{2} \]

- \(m \) = vehicle mass
- \(V_1, V_2 \) = vehicle speed before and after breaking, respectively
Incremental Mileage to Critical Wear (6.5mm) by VIN @ 95% Confidence Probability: \(\text{Pr}(w \geq 6.5 | \Delta m \leq m_0) = 0.95 \)

<table>
<thead>
<tr>
<th>VIN</th>
<th>Current Energy, kJ</th>
<th>Current Mileage</th>
<th>Increm. Mileage to Critical Wear (6.5 mm)</th>
<th>VIN</th>
<th>Current Energy, kJ</th>
<th>Current Mileage</th>
<th>Increm. Mileage to Critical Wear (6.5 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85,174</td>
<td>33,162</td>
<td>12,214</td>
<td>34</td>
<td>101,005</td>
<td>40,669</td>
<td>4,707</td>
</tr>
<tr>
<td>2</td>
<td>93,523</td>
<td>36,649</td>
<td>8,726</td>
<td>35</td>
<td>149,004</td>
<td>57,592</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>96,627</td>
<td>38,286</td>
<td>7,090</td>
<td>36</td>
<td>101,604</td>
<td>39,803</td>
<td>5,573</td>
</tr>
<tr>
<td>4</td>
<td>97,509</td>
<td>39,065</td>
<td>6,310</td>
<td>37</td>
<td>102,978</td>
<td>40,608</td>
<td>4,768</td>
</tr>
<tr>
<td>5</td>
<td>98,626</td>
<td>39,213</td>
<td>6,163</td>
<td>38</td>
<td>102,140</td>
<td>40,439</td>
<td>4,937</td>
</tr>
<tr>
<td>6</td>
<td>96,917</td>
<td>37,642</td>
<td>7,734</td>
<td>39</td>
<td>104,759</td>
<td>41,305</td>
<td>4,071</td>
</tr>
<tr>
<td>7</td>
<td>98,816</td>
<td>39,946</td>
<td>5,430</td>
<td>40</td>
<td>101,328</td>
<td>39,452</td>
<td>5,924</td>
</tr>
<tr>
<td>8</td>
<td>93,715</td>
<td>36,288</td>
<td>9,088</td>
<td>41</td>
<td>106,389</td>
<td>42,408</td>
<td>2,968</td>
</tr>
<tr>
<td>9</td>
<td>97,493</td>
<td>37,879</td>
<td>7,496</td>
<td>42</td>
<td>116,492</td>
<td>45,363</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>96,673</td>
<td>37,304</td>
<td>8,072</td>
<td>43</td>
<td>108,667</td>
<td>42,544</td>
<td>2,832</td>
</tr>
<tr>
<td>11</td>
<td>97,752</td>
<td>38,765</td>
<td>6,611</td>
<td>44</td>
<td>102,123</td>
<td>41,323</td>
<td>4,053</td>
</tr>
<tr>
<td>12</td>
<td>98,156</td>
<td>39,531</td>
<td>5,844</td>
<td>45</td>
<td>119,629</td>
<td>47,037</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>96,802</td>
<td>37,958</td>
<td>7,418</td>
<td>46</td>
<td>102,464</td>
<td>40,039</td>
<td>5,337</td>
</tr>
<tr>
<td>14</td>
<td>97,841</td>
<td>38,346</td>
<td>7,030</td>
<td>47</td>
<td>106,181</td>
<td>41,198</td>
<td>4,177</td>
</tr>
<tr>
<td>15</td>
<td>97,841</td>
<td>39,110</td>
<td>6,265</td>
<td>48</td>
<td>117,006</td>
<td>45,465</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>110,082</td>
<td>43,630</td>
<td>1,746</td>
<td>49</td>
<td>108,887</td>
<td>41,384</td>
<td>3,992</td>
</tr>
<tr>
<td>17</td>
<td>97,309</td>
<td>37,509</td>
<td>7,867</td>
<td>50</td>
<td>106,952</td>
<td>43,003</td>
<td>2,373</td>
</tr>
<tr>
<td>18</td>
<td>100,972</td>
<td>39,358</td>
<td>6,018</td>
<td>51</td>
<td>106,018</td>
<td>41,339</td>
<td>4,037</td>
</tr>
<tr>
<td>19</td>
<td>100,681</td>
<td>41,443</td>
<td>3,933</td>
<td>52</td>
<td>103,950</td>
<td>41,523</td>
<td>3,853</td>
</tr>
<tr>
<td>20</td>
<td>98,497</td>
<td>38,833</td>
<td>6,542</td>
<td>53</td>
<td>103,724</td>
<td>40,733</td>
<td>4,643</td>
</tr>
<tr>
<td>21</td>
<td>99,799</td>
<td>39,355</td>
<td>6,021</td>
<td>54</td>
<td>128,458</td>
<td>49,944</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>115,142</td>
<td>45,044</td>
<td>332</td>
<td>55</td>
<td>105,463</td>
<td>41,404</td>
<td>3,972</td>
</tr>
<tr>
<td>23</td>
<td>102,395</td>
<td>39,811</td>
<td>5,565</td>
<td>56</td>
<td>106,118</td>
<td>41,434</td>
<td>3,968</td>
</tr>
<tr>
<td>24</td>
<td>98,905</td>
<td>39,165</td>
<td>6,211</td>
<td>57</td>
<td>105,911</td>
<td>40,853</td>
<td>4,522</td>
</tr>
<tr>
<td>25</td>
<td>97,952</td>
<td>39,052</td>
<td>6,324</td>
<td>58</td>
<td>111,092</td>
<td>43,458</td>
<td>1,917</td>
</tr>
<tr>
<td>26</td>
<td>97,664</td>
<td>38,710</td>
<td>6,665</td>
<td>59</td>
<td>110,512</td>
<td>42,765</td>
<td>2,611</td>
</tr>
<tr>
<td>27</td>
<td>101,899</td>
<td>39,926</td>
<td>5,449</td>
<td>60</td>
<td>105,160</td>
<td>41,735</td>
<td>3,641</td>
</tr>
<tr>
<td>28</td>
<td>114,682</td>
<td>46,115</td>
<td>0</td>
<td>61</td>
<td>114,311</td>
<td>44,674</td>
<td>702</td>
</tr>
<tr>
<td>29</td>
<td>102,820</td>
<td>40,045</td>
<td>5,331</td>
<td>62</td>
<td>108,987</td>
<td>42,629</td>
<td>2,747</td>
</tr>
<tr>
<td>30</td>
<td>116,054</td>
<td>47,012</td>
<td>0</td>
<td>63</td>
<td>108,928</td>
<td>42,140</td>
<td>3,235</td>
</tr>
<tr>
<td>31</td>
<td>100,019</td>
<td>39,489</td>
<td>5,887</td>
<td>64</td>
<td>123,365</td>
<td>47,805</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>103,405</td>
<td>39,998</td>
<td>5,378</td>
<td>65</td>
<td>116,424</td>
<td>44,903</td>
<td>473</td>
</tr>
<tr>
<td>33</td>
<td>101,783</td>
<td>39,914</td>
<td>5,462</td>
<td>66</td>
<td>112,773</td>
<td>45,043</td>
<td>333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIN</th>
<th>Current Energy, kJ</th>
<th>Current Mileage</th>
<th>Increm. Mileage to Critical Wear (6.5 mm)</th>
<th>VIN</th>
<th>Current Energy, kJ</th>
<th>Current Mileage</th>
<th>Increm. Mileage to Critical Wear (6.5 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>143,458</td>
<td>55,378</td>
<td>0</td>
<td>0</td>
<td>143,458</td>
<td>55,378</td>
<td>0</td>
</tr>
</tbody>
</table>

Driver Assist
- **Service Due in 1000 Miles**
- **Conference call**
- **Go for run**
- **Brake pads replacement**
- **Check-in**
- **Family movie**

SEP 2016
- **Day**
- **Week**
- **Month**
- **Year**
- **Today**
- **Calendars**
- **Inbox**
Autonomous Vehicles (AVs) Safety, Reliability and Security (SRS) Assessment Techniques; Are We Ready?

Mohammad Pourgol-Mohammad, Ph.D

Safety Engineering and Risk/Reliability Analysis (SER²D) Division
Outline

- Problem Statement
 - AV System Characterizations
 - Main Problems in SRS Assessment for AVs
- Advancements in SRS Assessment Techniques
- SRS Techniques Readiness for AV Systems Assessment and Certification
- Proposed SRS Assessment Technique Framework
Characterizing AV System Environments

Autonomous Land-based

Air Transportation

Mapping and Monitoring of Oceans and Areas on Land

Inspections of Physical Structures

Maritime

Socio-economic

Physical

System

Organisation

Maintenance

Operations

Regulatory
Challenges

Human in the loop – benefits and risks

Interaction Makes Big Difference in Precise SRS Assessment of AV Systems with Heavy Interactions
Levels of Autonomy

“A system’s or sub-system’s own ability of integrated sensing, perceiving, analyzing, communicating, planning, decision-making, and acting, to achieve its goals as assigned by its human operator(s) through designed human-machine interface (HMI)”

<table>
<thead>
<tr>
<th>Level of Autonomy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fully manual control</td>
</tr>
<tr>
<td>2</td>
<td>The computer offers a complete set of decision/action alternatives.</td>
</tr>
<tr>
<td>3</td>
<td>The computer narrows alternatives down to a few</td>
</tr>
<tr>
<td>4</td>
<td>The computer suggests one alternative</td>
</tr>
<tr>
<td>5</td>
<td>The computer executes that suggestion if the human approves</td>
</tr>
<tr>
<td>6</td>
<td>The computer allows the human a restricted time to veto before automatic execution</td>
</tr>
<tr>
<td>7</td>
<td>The computer executes automatically, then necessarily informs the human</td>
</tr>
<tr>
<td>8</td>
<td>The computer informs the human only if asked</td>
</tr>
<tr>
<td>9</td>
<td>The computer informs the human only if it decides to</td>
</tr>
<tr>
<td>10</td>
<td>Fully autonomous Control</td>
</tr>
</tbody>
</table>
Main Questions on SRS Assessment of AV Systems

- What is “acceptable risk” for autonomous systems and operations?
 - Do autonomous systems and operations need to be “as safe as”, or “safer than” other types of systems?
 - Should “acceptable risk” change with level of autonomy (LoA)?
- How can risk assessments and risk models of autonomous systems take “shared control” and “adaptive autonomy” sufficiently?
 - Propagation of Failure, lack of coordination of elements' behaviors, Failure Masking
- A challenge in risk analysis is to identify everything that can go wrong.
 - How can we deal with the unknown unknowns?
Advancements in SRS Assessment Techniques

SRS Community is working Hard

ASME Safety Engineering and Risk Analysis
70 years of Contributions for Safety Technologies

University of Maryland Center for Risk and Reliability
Almost 30 Years of Research and Education in SRS Area

UCLA Garrick Institute for Risk Science Studies
Advancements in SRS Assessment Techniques-1

Aerospace

- **SPACE SHUTTLE QRAS MODEL**
 - Model helps in determining the probability of initiating events.
 - **Initiating Event**
 - **Manifold/Wall Failure**
 - Probability Distribution for initiating event
 - Fault Tree (to quantify pivotal events)

- **Event Tree (quantification)**
 - Event Tree (to determine initiating event probability)
 - **Success Prob.**
 - LOV Prob.
 - All results in Safety improvement by Order of Magnitude

Nuclear Power Safety

- **1975, Reactor Safety Study, WAHS-1400**
 - First comprehensive, large scale probabilistic risk assessment (PRA) of a complex system
 - All results in Safety improvement by Order of Magnitude

- **~20000 Years of NPP Experience**

- **Significant Safety Improvement**
- **Over 12.5 Millions of USA Commercial Annual Flights**

Lots of Conservatism; Making Design, Operation and maintenance Expensive
Advancements in SRS Assessment Techniques-2

Phenomenological and Event Based Techniques

Phenomenological and Logic Based Models

Generic Scenario

Event causing deviation from normal operation (initiating event)

Undesired Aircraft States

C (failure/accident)

Recovery

Normal Operation

ESD Model

Initiating Event
(e.g., Engine Failure)

Pivotal Event
(e.g., Pilot Error)

End State
(e.g., Ground Collision)

Top Level Summary Event Tree

Event Sequence Diagrams

Physical Models

Fault Trees
Advancements in SRS Assessment Techniques-3

Hardware Causal Relations with BDD Algorithm

<table>
<thead>
<tr>
<th>INITIATING EVENT OCCURS</th>
<th>SYSTEM OPERATION</th>
<th>OPERATOR ACTION</th>
<th>SEQUENCE</th>
<th>PLANT STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\phi = \phi(1 - P)(1 - Q) \]

Soft Causal Relations
Human, Organizational, and Regulatory Environment

Influence Diagram
Advancements in SRS Assessment Techniques-4

Software Failure Modeling

NIST IT Security Risk Management Framework
Advancements in SRS Assessment Techniques

External Environmental Causes

Dependencies Analysis
Functional-structural Hierarchy

Joint unconditional prob of failure of A and B

Component Fragility

Seismic Acceleration

P(F)

Connection
Failures of X-Ware Systems

Mars Polar Lander Crash on Mars

CRH D310 rear-ended CRH D3115 in 2011, China, 35 died, 211 injured
System Level CPH Failures

- Propagation of Failure
- Conflicts: lack of coordination of elements' behaviors
- Failure Masking: suppression of behavioral deviations
During a flight, a China Airlines B-747 experienced a flame-out of one of the engines.

The crew failed to notice the problem, since the autopilot software was compensating for the resulting thrust imbalance.

The compensating actions kept the plane in a stable, yet abnormal state.
- The autopilot now played a critical role in the plane’s stability.

The crew finally detected the problem.

They tried to take control of the plane, by switching off the autopilot.

The plane immediately became unstable, and started to tumble.
Why is the number 32 768 important?

Ariane 5 rocket
first launched in 1996 by the European Space Agency (ESA)
expendable launch system (i.e. no crew)
heavy reliance on software

https://www.youtube.com/watch?v=gp_D8r-2hwk
Why is the number 32 768 important?

the Ariane 5’s control software converted 64-bit floating point values to 16-bit signed integers

... the maximum value for a 16-bit signed integer is 32 768
The 1996 launch was Ariane 5’s first
Characteristics of Autonomous Systems
Cyber–Physical-Human (CPH)

- Heterogeneity, complexity, openness, learning ability
 - Too many risk event scenarios
 - Complexity of software and human failures vs. hardware failures
 - Past failures do not indicate future behavior in Software and Human
 - Potential learning capabilities of the software increase the difficulty in validating performance.

- Big data domain (lots of sensors and data collecting devices)
 - Challenge in Uncertainty of sensor data

- Functional and physical distribution, Interconnectivity of technology and social dimensions

- High levels of integration of the technical and social dimensions

- Very high pace of development and deployment

- Higher levels of diversity of supply chain
Solutions

Many of the current methods can still play a part in supporting SRS Assessment of AVs;
- Traditional modeling and analysis methods have significant limitations
- Data driven methods are inadequate to demonstrate safety
- Techniques are mostly hardware driven

Many areas require new modelling techniques to be developed
- New holistically modelling techniques capturing the connectivity and interdependencies
- Inclusion of large number of options of environment, and operation modes
- Simulations may assist in the detailed understanding of autonomous systems behavior, identification of SRS issues, and performing system validation.
- Inclusion of software failures and network security
- Human plays both positive (operators) and negative (hackers); The complexity of their involvement must be included.

Importance of quantifying SRS may increase in the future to enable real-time decision making
- Identify when the system performance drops below the acceptable threshold during operation.
Anatomy of a Risk Scenario

A path from the initiating event to an end state is called a scenario.

Too Many Risk Scenarios
More Realism, Simulation-Based Techniques are Promising Solutions

Are we in Final Stage of Development and Implementation: Answer is “NO”
Autonomous Vehicles:
Inserting Society into the Loop

Daniel Metlay
Senior Fellow
The B. John Garrick Institute for the Risk Sciences
University of California, Los Angeles
Silicon Valley pioneered self-driving cars. But some of its tech-savvy residents don’t want them tested in their neighborhoods.

“[Waymo’s] employees and families work and live there, said spokeswoman Alexis Georgeson, and test the vehicles, too. It’s also educating the public at local events. ‘Our vehicles are programmed to be safe and cautious drivers.’”

“[One resident] wants to make sure developers learn lessons from science-fiction literature: Heed the social implications of your innovations, and don’t let the technology run amok. ‘It’s too early,’ she said. ‘They’re too excited. They’re chasing the rainbow, and I just don’t want them driving down my street.’”
Technologies Are Not Value-Free

- Out of necessity, autonomous technologies will contain embedded values.
- By their decisions, engineers, scientists, designers, regulators, and developers all make choices that implicitly or explicitly enhance or discount certain cultural and societal values.
- Because those decisions are rarely transparent or accountable, the social acceptability of autonomous technologies depends on trust, both in the technology itself and in the organizations that implement and regulate it.
Development Currently Outpaces Governance

- Private governance operates by the choices individual firms make and via industry rules and regulations, best practices, and standards.

- Public governance is legally binding and entails liability. It regulates the behavior of people and organizations by establishing procedures and constraints.

- Trustworthy hybrid governance institutions ultimately will need to be put into place prior to widespread deployment of autonomous vehicle technologies.

- I suspect that doing so will be quite challenging.
Too Little, Too Much, Just Right

- A rush to deploy products in the market and the prioritization of industry interests may lead to accidents or failures with unacceptable societal and ethical consequences.

- Over-governance at the earliest stages of technological maturity may stifle innovation and deprive society of potentially significant benefits.

- Ideally, in a robust pluralistic society, the “right” balance emerges as a result of transparent and accountable “political” processes. In the real world, however, the processes are typically distorted in favor of the interests of one set of parties over another set.
How Safe is Safe Enough?

- Determining the “safety” of autonomous vehicles poses particular challenges.
 - They are currently in the early stage of deployment, but they need additional testing.
 - They interact with human decision-makers, ie, other drivers, in ways that may be hard to predict.
 - The competence of both the advocates and the “regulators” is just beginning to be developed.

- Answering the question “how safe is safe enough” must be an iterative and ongoing effort through the whole lifecycle of systems.
Can Morality Be Programmed?

Not all crashes can be avoided. Even low-probability events will need to be considered if there are millions of autonomous vehicles on the road.

Bonnefon et al. 2016
For Some Additional Thoughts.....

https://www.ntnu.edu/imt/iwass
Autonomous vehicle (AV) crash rates in California: still multiples higher than humans

Dr. Roger L. McCarthy, P.E.
30 October 2019
roger@mccarthyengineering.com
Messages today:

• California (CA) is the ONLY state requiring AV accident/risk experience be publicly reported
 – “Race to the bottom:” other states permitting AV testing with NO reporting

• One of several serious failings of the NHTSA in oversight of AV development safety
 – The NHTSA doesn’t require ANY type of AV safety/data reporting
 – The NHTSA has also been far too tolerant of Tesla’s “autopilot”
 – High AV crash rates show the NHTSA laissez-faire approach to AV technology development safety has not produced results
 – CA AV crash experience is far worse than human drivers

• I believe the NHTSA is looking to AV technology to remedy our nation’s deteriorating relative vehicle safety record on its watch

• Unfortunately AV technology is decades away; instead the US should be adopting vehicle regulations/technologies that other nations have demonstrated work
Nationally NHTSA’s lack of leadership has left AV testing an uncoordinated patchwork quilt

California coded autonomous crashes per autonomous mile 2015-18

AV Make

- Zoox
- GM Cruise
- Jingchi
- Waymo
- Apple
- Human Vehicles UMTRI Adj.
- Human Vehicles Raw 2013

AV Make

- 2015
- 2016
- 2017
- 2018
Waymo “gaming” CA AV reporting?

This was the accident narrative of one of the Waymo 2017 accidents coded in the OL316 report as occurring in the “conventional” mode.

SECTION 5 — ACCIDENT DETAILS - DESCRIPTION

☐ Autonomous Mode ✓ Conventional Mode

2018: 2.05 Million California Autonomous Miles

- 1.26 million miles
- Waymo, 61%
- GM Cruise, 22%
- Jingchi, 1%
- Zoox, 1%
- All others, 11%
- Apple, 4%

447,621 miles

In 2018 CA had 2.05 million AV miles

Point estimate human Driver @4.1 (UMTRI) the expected crashes: 8.4

Actual AV crashes in CA 2018: >46
Why do AVs have more crashes?

- Particularly when virtually all the crashes are the fault of the human driven vehicle involved?
- The mode of most AV accidents is the AV being struck in the rear by a following human driver.
- The human driver following the AV did not anticipated the AV’s sudden reaction to confusion:
- The AV just suddenly stops.
- Regulators need to be prepared to see dramatically high reported crash rates in AV fleets using current technologies.
Unexpected AV behavior results in rear end collisions

When self-driving cars crash, they’re most frequently rear-ended.

California autonomous-vehicle collisions in 2018

- Rear-end: 57%
- Sideswipe: 29%
- Other: 14%

However, the study suggests that humans are still the biggest problem. In fact, in three accident reports, humans were found to have attacked or climbed atop the self-driving cars.
Tesla “autopilot”

- Tesla rolled out its “autopilot” feature in 14 October 2015
- The “autopilot” mode of the current Tesla vehicles is only level 2 “self-driving”
 - not classed as an “autonomous” vehicle
 - Otherwise Tesla would have to report all data in California
- BUT - there are now probably more than 500,000 Tesla’s on the road with some “auto pilot” capability and probably less than a thousand truly autonomous vehicles
- Much larger Tesla fleet might permit the detection of an incremental change in crash risk from incremental change of vehicle automation
- UNFORTUNATELY, even though all this data is being collected on public roads, while subjecting the public to risk, the NHTSA does NOT require data from it to be publicly reported.
In 2018: “Tesla’s Driver Fatality Rate is more than Triple that of Luxury Cars (and likely even higher)”

Result from manually correcting Tesla codes in FARS

https://medium.com/@MidwesternHedgi/teslas-driver-fatality-rate-is-more-than-triple-that-of-luxury-cars-and-likely-even-higher-433670ddde17
January 2016 Fatal Tesla “autopilot” crash in China
Tesla “autopilot”

- Tesla rolled out its “autopilot” feature in 14 October 2015.
- Two months later, there was a fatal Tesla S crash on 20 January 2016 involving Gao Yaning in Handan, China while using the “autopilot” feature.
- The Tesla S traveling at full speed exhibited no braking or evasion, slammed into the back of a slow moving, large orange street sweeper partially in the high-speed left lane.
- In an emailed statement, Tesla said... it had not been able to determine whether Autopilot was active at the time of the Handan accident.
- “The company declined to say when it learned of the fatality in China, or whether it had reported the crash to United States safety officials.”
EVENTUALLY Tesla owns up

• Tesla Admits Autopilot Feature Led to Fatal China Crash in 2016

• (Yicai Global) Feb. 28 [2018] -- Electric carmaker Tesla Inc. has admitted that its self-driving feature was responsible for the collision that caused the death of a 23-year-old Chinese man more than two years ago.

Subsequently even the US NHTSA finally comes to its senses about Tesla safety

- “Tesla's Autopilot system does NOT make driving safer and may even increase the risk of crashes, new report suggests - upending the findings of 2017 safety investigation”
 - “According to Quality Control Systems Corporation, which conducted the new analysis, the NHTSA misinterpreted the data it was provided; instead of reducing crashes, the findings suggest autosteer may have made accidents more common.”
 - Daily Mail, 5 March 2019

- “Federal safety regulators scolded Musk over ‘misleading statements’ on Tesla safety”
 - Washington Post, 7 Aug 2019
1970 driving Risk by Nation: Fatalities per billion vehicle kilometers traveled (VKT)

This is the last year before the NHTSA is created

USA is the best

After 46 years of the NHTSA in charge of auto safety the USA has fallen to worst among these peers.
2016 driving disease burden by Nation:
Fatalities per 100K population

Combine the most driving with the highest driving risk and you get

Why is the US so bad?

- The US combines the most driving with, now, the highest risk of driving
 - 47 years ago the US had the lowest risk of driving among peers
- The US NHTSA has been obsessed with vehicle safety rather than driver behavior
 - I believe this to be an unfortunate legacy of its creation
 - Dr. Leonard Evans (NAE) has suggested we rename the agency the:
 “National Vehicle Safety Administration”
- Driver behaviors are far more important to safety than vehicle safety
 - For example, the US permissible blood alcohol of .08% is a disgrace
 - “A .05% BAC legal limit is the most common and found in ... Argentina, Australia, Austria, Belgium, Finland, France, Germany, Greece, Hong Kong, Israel, Italy, South Africa, Spain, Switzerland, Thailand, Taiwan, Turkey, and others”
As bad as this is for the US; it is about to get worse

EU lists 11 car safety systems to become mandatory from 2021

- Advanced emergency braking
- Alcohol interlock installation facilitation
- Drowsiness and attention detection
- Event (accident) data recorder
- Emergency stop signal
- Full-width frontal occupant protection crash test and improved seatbelts
- Head impact zone enlargement for pedestrians and cyclists, as well as safety glass
- Intelligent speed assistance
- Lane keeping assist
- Pole side impact occupant protection
- Reversing camera or detection system

https://www.theweek.co.uk/93687/eu-lists-11-car-safety-systems-to-become-mandatory-from-2021
The future

- “The notion that they [AVs] are today safer than humans is pure myth,” said Steve Shladover at California PATH, a transportation research arm of UC Berkeley. “They’re not even close to the capabilities of human drivers.”
- Regardless of the NHTSA hopes, AVs will NOT be salvation
- A higher crash rate is currently observed in every mode of automated driving
 - And we have visited Tesla’s fatal crash rate
- Instead of AVs, the biggest safety impact could be made by developing the driver “assistance” technologies as a gradual path to full AV
- AND bringing the US insane driving regulations in conformance with the rest of the world.
Questions?
Summary of the April 26, 2019 Workshop on Safety and Risks of Autonomous Vehicles

Panel on Advancing Safety Technologies for Autonomous Vehicles
United States Congress
October 30, 2019
2044 Rayburn House Office Building

Mohammad Modarres
Center for Risk and Reliability (CRR)
Department of Mechanical Engineering
University of Maryland, College Park
Autonomous Vehicles: Features & Issues

- Remarkable and trendiest technology
- Obsolete car ownership
- Industry hope of “zero crashes”
- Leaders include Waymo and Tesla, Ford Motor Company, General Motors, Mercedes-Benz
- Traffic and pollution in urban centers
- Shared mobility options
- Slow advances on safety, risk and reliability
- Poor average distance driven to an incident
Workshop Objectives

Examine views from Academia, Government, and Industry:

- Safety, risk, security, and reliability of AVs
- Adequacy of road infrastructures
- Legal, ethical and regulatory considerations
- More safety research and technology needs
Big Picture for Self-Driving Safety

• True self-driving long time away
• Aspiration: Self-driving safer than conventional technologies
• Driver assistance offers a low hanging fruit
• More independent safety transparency and collaboration
• Need minimum performance standards
• Better autonomy software safety standards
Maryland MDOT Initiatives

• Strategic Plan for Connected and Automated Vehicles (CAV Plan)
• Develop robust CAV, including:
 • CAV sensor collects data on bridges, roads, pavements
 • Use of predictive analytics
 • Integrated communications controllers and networks
• Planning a Security Credential Management for secure management
NHTSA Considerations for Automated Driving

• Evaluating emerging safety issues and technologies
• Building knowledge of new technologies
• Developing technology-neutral procedures
• Modernizing requirements and performance criteria
• Develop best practices guidance

From Dee Williams: NHTSA’s FMVSS Considerations for Vehicles with Automated Driving Systems
Measuring AV Safety

- Need a better and transparent evaluation of unsafe events
- Develop a protocol for information sharing
- Common safety design taxonomy
- Establish designated demonstration period for safety benchmarking
- More research on AV safety and collaboration between regulators, academics and industry

From Marjory Blumenthal: Measuring Automated Vehicle Safety: Building Better Outcomes and Policy
More Academic Perspectives on AV Safety and Risk

- Learn from other high-risk industries: nuclear power, pharma, etc.
- Risk-informed performance-based assessment
- Insufficient collaborations between stakeholders
- Match human cognitive adaptability and on-the-fly reasoning
- Need a gradual path to full AV
- Developers appear over-enthusiastic and confident
- Regulators and policy-makers are slow
More Academic Perspectives on AV Safety and Risk

- Safety analysts highly skeptical
- Major ethical issues
- Risk modeling, safety assessment Path planning
- How machine learning techniques adapt themselves to unforeseen conditions?
- Is the policy that China views: Re-engineer entire road infrastructure better?
- Dedicated roads or lanes to AVs?
- Consensus: full autonomy principle is possible, surely not imminent
Thank You

Center for Risk and Reliability