Date of Issuance: December 29, 2023

The next edition of this Code is scheduled for publication in 2026. This Code will become effective 6 months after the Date of Issuance.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The standards committee that approved the code or standard was balanced to ensure that individuals from competent and concerned interests had an opportunity to participate. The proposed code or standard was made available for public review and comment, which provided an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor does ASME assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representatives or persons affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes and preamble in this document (if any) are part of this American National Standard.

“ASME” and the above ASME symbol are registered trademarks of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2023 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Foreword ... x
Committee Roster ... xi
Correspondence With the B31 Committee xiii
Introduction .. xv
Summary of Changes ... xvii

Part GR General Requirements .. 1

Chapter GR-1 Scope and Definitions 1
GR-1.1 Scope .. 1
GR-1.2 Responsibilities .. 1
GR-1.3 Intent of the Code ... 1
GR-1.4 Packaged Equipment Requirements 2
GR-1.5 Terms and Definitions ... 2
GR-1.6 ASME B31.12 Appendices 11
GR-1.7 Nomenclature ... 12

Chapter GR-2 Materials ... 13
GR-2.1 General Requirements .. 13
GR-2.2 Joining and Auxiliary Materials 26

Chapter GR-3 Welding, Brazing, Heat Treating, Forming, and Testing .. 27
GR-3.1 General .. 27
GR-3.2 Welding and Brazing .. 27
GR-3.3 Welding and Brazing Materials 30
GR-3.4 Construction of Weldments 30
GR-3.5 Preheating for Weldments .. 44
GR-3.6 Heat Treatment ... 45
GR-3.7 Specific and Alternative Heat Treat Requirements 47
GR-3.8 Construction of Brazements 47
GR-3.9 Forming of Pipe Components 49
GR-3.10 Hardness Testing ... 50

Chapter GR-4 Inspection, Examination, and Testing 52
GR-4.1 General .. 52
GR-4.2 Inspection ... 52
GR-4.3 Examination .. 52
GR-4.4 Personnel Qualification and Certification 53
GR-4.5 Extent of Required Examination and Testing 54
GR-4.6 Acceptance Criteria .. 54
GR-4.7 Supplementary Examination 54
GR-4.8 Examinations to Resolve Uncertainty 54
GR-4.9 Defective Components and Workmanship 54
Chapter GR-5 Operation and Maintenance ... 56
GR-5.1 General ... 56
GR-5.2 Operation and Maintenance Plan ... 56
GR-5.3 Maintenance Requirements .. 58
GR-5.4 Leakage Surveys ... 60
GR-5.5 Repair Procedures ... 60
GR-5.6 Injurious Dents and Mechanical Damage 61
GR-5.7 Permanent Repair of Welds With Defects 62
GR-5.8 Permanent Field Repair of Leaks and Nonleaking Corroded Areas ... 62
GR-5.9 Permanent Field Repair of Hydrogen Stress Cracking in Hard Spots and Stress Corrosion Cracking ... 62
GR-5.10 Testing and Examination of Repairs 62
GR-5.11 Valve Maintenance ... 63
GR-5.12 Transmission Pipeline Maintenance 63
GR-5.13 Abandoning of Transmission Facilities 64
GR-5.14 Decommissioning of Transmission Facilities 64
GR-5.15 Recommissioning of Transmission Facilities 64
GR-5.16 Repositioning a Pipeline in Service 64
GR-5.17 Testing for Integrity Assessment of In-Service Pipelines 65
GR-5.18 Distribution Pipeline Maintenance 66
GR-5.19 Leakage Surveys .. 66
GR-5.20 Leakage Investigation and Action ... 66
GR-5.21 Repair, Testing, and Examination of Mains Operating at Hoop Stress Levels at or Above 30% of the SMYS ... 67
GR-5.22 Requirements for Abandoning, Disconnecting, and Reinstating Distribution Facilities 67
GR-5.23 Maintenance of Specific Facilities 68

Chapter GR-6 Quality System Program for Hydrogen Piping and Pipeline Systems ... 70
GR-6.1 Quality System Program for Industrial Piping 70
GR-6.2 Quality System Program for Pipelines 70

Part IP Industrial Piping ... 71

Chapter IP-1 Scope and Responsibilities .. 71
IP-1.1 Scope ... 71
IP-1.2 Responsibilities .. 71
IP-1.3 Intent .. 71
IP-1.4 Determining Code Requirements .. 71

Chapter IP-2 Design Conditions and Criteria 72
IP-2.1 Design Conditions .. 72
IP-2.2 Design Criteria .. 73

Chapter IP-3 Pressure Design of Piping Components 79
IP-3.1 General .. 79
IP-3.2 Straight Pipe ... 79
IP-3.3 Curved and Mitered Segments of Pipe 80
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-3.4</td>
<td>Branch Connections</td>
<td>81</td>
</tr>
<tr>
<td>IP-3.5</td>
<td>Closures</td>
<td>87</td>
</tr>
<tr>
<td>IP-3.6</td>
<td>Pressure Design of Flanges and Blanks</td>
<td>88</td>
</tr>
<tr>
<td>IP-3.7</td>
<td>Reducers</td>
<td>88</td>
</tr>
<tr>
<td>IP-3.8</td>
<td>Pressure Design of Other Components</td>
<td>88</td>
</tr>
<tr>
<td>Chapter IP-4</td>
<td>Service Requirements for Piping Components</td>
<td>91</td>
</tr>
<tr>
<td>IP-4.1</td>
<td>Valves and Specialty Components</td>
<td>91</td>
</tr>
<tr>
<td>IP-4.2</td>
<td>Bolting and Tapped Holes for Components</td>
<td>91</td>
</tr>
<tr>
<td>Chapter IP-5</td>
<td>Service Requirements for Piping Joints</td>
<td>92</td>
</tr>
<tr>
<td>IP-5.1</td>
<td>Scope</td>
<td>92</td>
</tr>
<tr>
<td>IP-5.2</td>
<td>Welded Joints</td>
<td>92</td>
</tr>
<tr>
<td>IP-5.3</td>
<td>Flanged Joints</td>
<td>92</td>
</tr>
<tr>
<td>IP-5.4</td>
<td>Expanded Joints</td>
<td>93</td>
</tr>
<tr>
<td>IP-5.5</td>
<td>Threaded Joints</td>
<td>94</td>
</tr>
<tr>
<td>IP-5.6</td>
<td>Caulked Joints</td>
<td>94</td>
</tr>
<tr>
<td>IP-5.7</td>
<td>Brazed and Soldered Joints</td>
<td>95</td>
</tr>
<tr>
<td>IP-5.8</td>
<td>Special Joints</td>
<td>95</td>
</tr>
<tr>
<td>Chapter IP-6</td>
<td>Flexibility and Support</td>
<td>96</td>
</tr>
<tr>
<td>IP-6.1</td>
<td>Analysis of Displacement Loads</td>
<td>96</td>
</tr>
<tr>
<td>IP-6.2</td>
<td>Analysis of Sustained Loads</td>
<td>96</td>
</tr>
<tr>
<td>IP-6.3</td>
<td>Piping Support</td>
<td>96</td>
</tr>
<tr>
<td>Chapter IP-7</td>
<td>Specific Piping Systems</td>
<td>97</td>
</tr>
<tr>
<td>IP-7.1</td>
<td>Instrument Piping</td>
<td>97</td>
</tr>
<tr>
<td>IP-7.2</td>
<td>Pressure-Relieving Systems</td>
<td>97</td>
</tr>
<tr>
<td>Chapter IP-8</td>
<td>Dimensions and Ratings of Components</td>
<td>98</td>
</tr>
<tr>
<td>IP-8.1</td>
<td>Dimensional Requirements</td>
<td>98</td>
</tr>
<tr>
<td>IP-8.2</td>
<td>Ratings of Components</td>
<td>98</td>
</tr>
<tr>
<td>IP-8.3</td>
<td>Reference Documents</td>
<td>98</td>
</tr>
<tr>
<td>Chapter IP-9</td>
<td>Fabrication, Erection, and Assembly</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.1</td>
<td>General</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.2</td>
<td>Responsibility</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.3</td>
<td>Content and Coverage</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.4</td>
<td>Packaged Equipment Piping</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.5</td>
<td>Exclusions</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.6</td>
<td>Fabrication and Erection</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.7</td>
<td>Construction of Weldments</td>
<td>101</td>
</tr>
<tr>
<td>IP-9.8</td>
<td>Preheating for Weldments</td>
<td>102</td>
</tr>
<tr>
<td>IP-9.9</td>
<td>Heat Treatment</td>
<td>102</td>
</tr>
<tr>
<td>IP-9.10</td>
<td>Specific and Alternative Heat Treatment Requirements</td>
<td>102</td>
</tr>
<tr>
<td>IP-9.11</td>
<td>Construction of Brazements</td>
<td>102</td>
</tr>
<tr>
<td>IP-9.12</td>
<td>Bending and Forming of Pipe and Tube</td>
<td>102</td>
</tr>
<tr>
<td>IP-9.13</td>
<td>Assembly and Erection</td>
<td>103</td>
</tr>
<tr>
<td>IP-9.14</td>
<td>Threaded Joints</td>
<td>103</td>
</tr>
<tr>
<td>IP-9.15</td>
<td>Tubing Joints</td>
<td>103</td>
</tr>
<tr>
<td>IP-9.16</td>
<td>Expanded Joints and Special Joints</td>
<td>103</td>
</tr>
</tbody>
</table>
PL-3.15 Valves ... 141
PL-3.16 Vault Provisions for Design, Construction, and Installation of Pipeline Components 142
PL-3.17 Location for Customers' Meter and Regulator Installations .. 143
PL-3.18 Hydrogen Gas Service Lines ... 143
PL-3.19 Installation Inspection ... 144
PL-3.20 Repair or Removal of Defective Welds in Piping Intended to Operate at Hoop Stress Levels of 20% or More of the SMYS ... 146
PL-3.21 Steel Pipeline Service Conversions ... 146

Mandatory Appendices
I Design of Aboveground Hydrogen Gas Pipeline Facilities .. 148
II Reference Standards ... 153
III Safeguarding .. 156
IV Nomenclature .. 158
VII Gas Leakage and Control Criteria ... 163
IX Allowable Stresses and Quality Factors for Metallic Piping, Pipeline, and Bolting Materials 168

Nonmandatory Appendices
A Precautionary Considerations ... 218
B Alternative Rules for Evaluating Stress Range .. 228
C Recommended Practices for Proof Testing of Pipelines in Place 230
D Estimating Strain in Dents .. 233
E Sample Calculations for Branch Reinforcement in Piping ... 234
F Welded Branch Connections and Extruded Headers in Pipeline Systems 239
G Guideline for Higher Fracture Toughness Steel in Gaseous Hydrogen Service for Pipelines and Piping Systems ... 245

Figures
GR-2.1.2-1 Minimum Temperatures Without Impact Testing for Carbon Steel Materials 18
GR-2.1.2-2 Reduction in Minimum Design Metal Temperature Without Impact Testing 21
GR-3.4.3-1 Geometry of Weld Joint Detail Single Vee Groove Butt With Extended Land 32
GR-3.4.3-2 Geometry of Weld Joint Detail Square Butt Weld 32
GR-3.4.3-3 Geometry of Weld Joint Detail Single Vee Groove Butt, Open Root 32
GR-3.4.3-4 Unequal Pipe Component Thicknesses, Thicker Components Bored for Alignment 33
GR-3.4.3-5 Unequal Pipe Component Thicknesses, Thicker Components Taper-Bored to Align 33
GR-3.4.3-6 Geometry of Weld Joint Detail Single Vee Groove Butt, Continuous Flat Backing Ring 33
GR-3.4.3-7 Geometry of Weld Joint Detail Single Vee Groove Butt, Continuous Tapered Backing Ring 34
GR-3.4.3-8 Geometry of Weld Joint Detail Single Vee Groove Butt, Consumable Insert 34
GR-3.4.3-9 Preparation and Alignment of Pipe Branch to Pipe Header Connection 34
GR-3.4.4-1 Geometry of Weld Deposit Single Vee Groove Butt, Open Root 36
GR-3.4.4-2 Geometry of Weld Deposit Root Single Vee Groove Butt With Extended Land (Without Filler Metal) ... 36
GR-3.4.4-3 Geometry of Weld Deposit Square Butt End (Without Filler Metal) 36
GR-3.4.5-1 Welding End Transition — Maximum Envelope ... 37
GR-3.4.6-1 Geometry of Weld Deposit Single Vee Groove Butt, Open Root With Concavity 38
GR-3.4.7-1 Fillet Weld Size .. 40

vii