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ORNL Tribology Research Portfolio

Technologies

Applications

Advanced lubrication .

— lonic liquids (including eco-friendly)

— Nanolubricants

— Molten salts
Surface engineering

— Superlubricity and wear-resistant coatings

— Surface functionalization

— Additive surface compositing & structuring (FSP, LM, BJ)
Nanomaterials processing

— Organic/electrochemical synthesis

— Chemical/physical vapor deposition (CVD/PVD)
Contact interface investigation

— Contact mechanics and lubrication modeling

— Surfaceftribofilm characterization

Bench testing & standardization

— Application-oriented testing and analysis .
— 4 ASTM standards developed at ORNL

Vehicle (IC & EV)

Energy-efficient engine and gear lubricants
Superlubricity bearings and seals
High-efficiency e-motor coolants
High-conductivity thermal interface material

Bioenergy

Biomass/MSW preprocessing tool wear & mitigation
Biomass/MSW fouling & plugging

Concentrating solar power

Wear/corrosion-resistant molten salt pumps
Self-lubricating high-efficiency seals

Hydropower & Hydraulics

Eco-friendly tidal turbine lubricants/hydraulic fluids

Nuclear

Grid-to-rod fretting of ATF claddings (PWR)
Wear and corrosion in molten salt and gas-cooled reactors

Building

Advanced lubricants and coatings for HVACs
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ORNL Tribology Research Capabilities

Tribosystem analysis for understanding the failure
modes and wear mechanisms

— Contact interface modeling: Contact mechanics, heat
transfer, and lubrication modeling

— Materials characterization: Microstructure,
composition, morphology, roughness, and mechanical
and thermophysical properties

Materials development for mitigation

— Novel lubricants and additives: lonic liquids, molten
salts, and nanoparticles

— Advanced coatings/surface treatments: CNT
coatings, oxygen diffusion, friction stir processing,
and additive manufacturing

Tribological testing and analysis for evaluation
- Various wear modes: Abrasive (2-body & 3-body) wear;
Sliding wear; Rolling contact fatigue; Fretting

— Well-controlled conditions: Ambient, vacuum, or
controlled gas; RT — 1000 °C; 0.1 — 1000 N load; 0.1
mm/s — 15 m/s velocity; Dry, wet, & lubricated
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* Standardization: 4 ASTM standards for tribo-testing
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ORNL Advanced Lubrication

* Development and evaluation of new lubricant additives .

(ionic liguids, nanoparticles, molten salts, etc.) Oil-miscible phosphonium- ‘4!

organophosphate IL
* Recent projects:

:rm 16 engine oil
1. Organic-modified CNTs as lubricant additives for enhanced lubricity and ., 0_? % ‘;z containing 1% IL
thermal management of EVs (DOE VTO 2022-26, CRADA w/ Valvoline) :: r > :
‘“9 %

2. Eco-friendly ionic liquids as additives for environmentally-acceptable
lubricants (DOE WPTO 2021-25, ORNL TIP 2020-21, DOE VTO 2018-20) 698

3. Molten salt lubrication for concentrating solar power and nuclear
reactors (DOE NE 2021-25, SETO 2018-20)

4. lonic liquids for lubricating HVAC compressors (DOE TCF 2021-23)
5. Organic-modified nanoparticles as lubricant additives (Hyundai 2019-20,

DOE VTO w/ UTK and UCM, 2015-17) Nanoflubri‘tzants |
6. lonic liquids as lubricants or multi-functional lubricant additives to e nln? s ) # |
improve fuel economy (Seed and VTO 2005-19, w/ GM, Shell, and DRO) 21im 5| Castiron'substrate

7. Compatibility of lubricant additives with non-ferrous coatings and alloys
(VTO 2013-20)

8. Hyperbranched polymers for improved viscosity and enhanced lubricity
(VTO 2014-16, w/ PNNL)

9. Tribological evaluation of aged diesel engine oils (DOE VTO 2002-05)
10. Diesel fuel injectors in ultra low sulfur fuels (DOE VTO 2002-05) Heat exchangers <- Long-shafed pump
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ORNL Surface Engineering

9.

Development of new coatings and surface treatments

Recent projects

Surface modifications to enhance printability of US banknotes (BEP 2024-26)

Carbon nanotube-based coatings for friction and thermal management (DOE
VTO 2022-26, ORNL Seed 2018-19)

Tool wear characterization and mitigation in biomass preprocessing (DOE
BETO 2018-26, CRADAs with Rawlings and Forest Concepts)

Graphite wear in molten salt and gas-cooled reactors (DOE NE 2021-25)
Carbon nanotube-coated mesh seal (DOE SETO 2020-24)

Grid-to-rod fretting of candidate accident-tolerant fuel claddings (DOE NE FOA
2018-23, CASL 2014-17)

Additive manufacturing for tribology (Ford, 2018-20)

Advanced diesel engine piston skirt coatings (DOE VTO 2015-16, CRADA w/
Cummins)

AlMgB14-based superhard coatings for hydraulic & tooling (DOE ITP 2007-10,
w/ Eaton, Greenleaf, and Ames Lab)

10. Surface nanocompositing of aluminum alloys using friction stir processing

(ORNL LDRD 2006-08)

11. Oxygen diffusion case-hardening for titanium alloys (DOE VTO 2004-08)
12. Low-temperature carburization of austenitic stainless steels (DOE ITP 2005-08,

w/ Swagelok and CWRU)
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lonic liquids for lubrication (since 2005)

* |ILs as neat lubricants or base stocks

— High thermal stability (up to 500 °C)
— High viscosity index (120-370)
— Low pressure-viscosity coefficient = low EHL friction
— Strong surface adsorption = low boundary friction
— Strong tribo-film formation = excellent wear protection
— Technical problem: Many earlier ILs corrosive
* ORNL developed non-corrosive ILs in 2006 (U.S. patent #7,754,664)

* ILs as oil additives for engine/gear lubrication

— Potential multi-functions: AW/EP, FM, etc.

— Ashless = low sludge

— Allow the use of lower viscosity oils

— Advantage: cost effective and easier market penetration
— Technical problem: most ILs insoluble in oils (<<1%)

* ORNL invented 15t group of oil-soluble ILs in 2010 (U.S. patent
#9,957,460, 2014 R&D 100 Award)

* ILs as eco-friendly lubricant additives for hydropower/hydraulics

- I

— Problem: many ILs as toxic as traditional additives
* ORNL invented eco-friendly ILs in 2019 (U.S. Patent #11,760,766)
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Ionic Liquid Anti-wear

Additives for Low-Viscosity
Engine Lubricants

lonic liquids are ‘room temperature organic molten salts’,
composed of cations & anions, instead of neutral molecules.

4 5 R R

ek [ ] [
_I_

- | R, R, 2 R,
R

l-alkyl-3-methyl-  N-alkyl- Tetraalkyl- Tetraalkyl-

imidazolium pyridinium  ammonium phosphonium

(R1,2,3,4 = alkyl)
Common Cations

[PF¢) [BE,J [CH,CO,J
[(CF3SO,),N]" (T£,N) [CE,SO,] [CE;CO, I, [NO;]
[(C,E,SO,),NT (BETI) Br, CL, I
[BRIR:RsR4] [ALCLT, [AICL)

[P(O)(OR),] (phosphate)
[P(O)(R):]" (phosphinate)

Common Anions

Y. Zhou and J. Qu*, lonic liquids as lubricant additives - a review, ACS Applied Materials & Interfaces 9 (2017) 3209.
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2010 Invented oil-miscible ionic liquids as lubricant additives
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Qu, et al., U.S. Patent #10,435,642.
Qu, et al., ACS Appl. Mater. Interfaces 4 (2012) 997.
Qu, et al., Advanced Materials 27 (2015) 4767.
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Multiple groups of oil-soluble ILs have been developed

Cation structures

Anion structures

R R; o OR, O R o) o .
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[Pssss] [DEHP] [NgggH][DEHP] [Pses14][C17H35COO0]
Examples of oil-soluble ILs: §

ORNL has developed six groups of > \ C\\\wp.
ILs fully miscible (>5%) in non-polar A~ ’\’\_\—\ Y \HxL\’\ )/H ’\’\,\

base oils.
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e Pl I
© O/\S\/\ O/\S\/\ 'O/ \(CH2)16CH3

J. Qu, H. Luo, U.S. Patent #10,435,642, 2019.
J.Qu

1.
%OAK RIDGE 2. , H. Luo, Y. Zhou, J. Dyck, T. Graham, U.S. Patent Application 14/444,029, 2014.
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Tribofilm by phosphonium-phosphate [Pggss][DEHP]

@

9
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Tribofilm (up to 300 nm) on iron:

» Iron phosphates (~50 at%),
» Iron oxides (~50 at%),

F Fl 720 715 710 705 540 536 532 28
> Metalllc iron (<1 at%)' Binding Energy (eV) Binding Energy (eV)
%OAK RIDGE W.C. Barnhill and J. Qu*, et al., ACS Applied Materials & Interfaces 6 (2014) 22585.
National Laboratory



Tribofilm (up to 400 nm) on iron:

» Iron phosphates (30-40 at%),
> Iron oxides (40-50 at%),
» Metallic iron (10-15 at%).
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Tribofilm by ammonium-phosphate [NggsH][DEHP]
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W.C. Barnhill and J. Qu*, et al., Tribology Letters 63 (2016) 22.



Correlating friction and wear performance to the
tribofilm chemical composition
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Correlating to the tribofilm thickness and 015
mechanical properties 8
S
* Thicker tribofilm often leads to lower friction and wear §O.1
* No correlation between tribofilm hardness with friction or wear .§
L
« Lower ratio of load to stiffness squared (P/S2) leads to less wear <&
— P/S? representing the resistance to plastic deformation 0.05
— Opposite trend to literature reports for bulk or coating materials
— Attributed to the dynamic, sacrificial and self-healing nature
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OAK RIDGE A K. Landauer, W.C. Barnhill, J. Qu*, Wear 354-355 (2016) 78.
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Understand the IL tribofilm formation process

& & ; ; FFT n
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J.Qu, etal., Wear 332-333 (2015) 1273.
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Y. Zhou*, D.N. Leonard, W. Guo, J. Qu*, Scientific Reports 7 (2017) 8426.
W. Guo*, Y. Zhou, and J. Qu*, et al., ACS Applied Materials & Interfaces 9 (2017) 23152.
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Wear debris evolution-based tribofilm growth model for ILs
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Y. Zhou* and J. Qu*, et al., Scientific Reports 7 (2017) 8426.
OAK RIDGE

National Laboratory

W. Guo*, Y. Zhou, and J. Qu*, et al., ACS Applied Materials & Interfaces 9 (2017) 23152.

Good correlation with the APT
revealed IL tribofilm structure
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2013 discovered synergistic effects between
phosphonium-phosphate ILs and ZDDPs

—— BO+0.8%ZDDP
—— B0+0.4%ZDDP+0.52%[P8888][DEHP]
—— BO+1.04%[P8888][DEHP]
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BO+0.8%ZDDP
® B0 +0.4%ZDDP+0.52%[P8888][DEHP]
= BO+1.04%[P8888][DEHP]
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P, S, and O concentrations at the
interface are 30-70X higher than those
- in the bulk!

= oil =

Solid surface

J. Qu, et al., Advanced Materials 27 (2015) 4767.

ZDDP alone
Re=0.75 pm

- ZDDP+IL

No synergy between
ammonium-phosphate
ILs and ZDDP though...




Prototype IL+ZDDP additized engine oil demonstrated
lower boundary and mixed friction

0.14 -
012 0W-16 oil w/ 0.8% ZDDP
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%O AK RIDGE W.C. Barnhill and J. Qu¥, et al., Frontiers in Mechanical Engineering, 1 (2015) 12.
17
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2018 ORNL discovered synergistic effects between
ammonium-phosphate ILs and OFM
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W.Li, J. Qu*, et al.,

Langmuir 34 (2018) 10711.



Introducing ILs into a fully-formulated lubricant is rather
complex...

] IL+detergent | IL+dispersant
0.25 0.25 4
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2013 Demonstrated improved fuel economy in engine dyno
tests for IL-additized experimental oil

Sequence VIE (ASTM D7589) FEI 1 fuel economy engine dyno tests at InterTek

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

2000 rpm, | 2000 rpm, 1500 rpm, 695 rpm, 695 rpm, 695 rpm,

Engine condition 105N-m, | T0O5N-m, | 105N-m, | 20N-m, | 20N-m, | 40 N-m,

115 °C 65 °C 115°C 115°C 35 °C 115°C
Lubrication regime Dominated by HD/EHD lubrication | More boundary & mixed lubrication lonic Liquid Anti-w
OW-16 w/ ZDDP vs. BLB 2.36% | 2.84% 1.66% 3.72% 5.98% 3.03% Eagnc Ly

0W-16 w/ ZDDP+IL vs. BLB | 2.54% 2.91% 1.77% 4.48% 6.46% 3.81%
ZDDP+IL vs. ZDDP only 0.17% 0.07% 0.11% 0.76% 0.48% 0.79%

1.77 - 6.46% fuel economy improvement (FEI) for the prototype
IL+ZDDP additized experimental oil over the standard baseline

%O Ring;

* J.Qu, etal., U.S. Patent #10,435,642 licensed to Driven Racing Oil, 2019.
* J.Qu, etal, 2014 R&D 100 Awards.
%OAK RIDGE  J.Qu, et al., Frontiers in Mechanical Engineering, 1 (2015) 12.

National Laboratory



Prototype IL-additized low-viscosity engine oil demonstrated
9.9% increased fuel economy in a racing engine

Engine dyno running stages (V8, 90 mins)
1. 15 minutes @ 1,500 RPM - 140 ft Ibs, Dyno Sweep To 6,000 RPM at max 140-500 ft Ibs, stop-start
2. 15 minutes @ 2,900 RPM - 140 ft Ibs, Dyno Sweep To 6,000 RPM
3. 15 minutes @ 1,750 to 4,500 RPM (5 second acceleration and 10 second deceleration) — 100-300 ft Ibs, Dyno Sweep To 6,000 RPM
4. 15 minutes @ 4,500 RPM - 175 ft Ibs, Dyno Sweep To 6,000 RPM

IL replacing half ZDDP with IL to Oil temp | Torque (Ib- | Fuel consump. | FElvs. SN Metal in used oil (ppm)
maintain P content @ ~800 ppm (°C) ft) {19)] 5W-30

SN SAE 5W-30 31.85 5 6 1
Synthetic SAE 0W-20 121 506 n/a n/a 3 0 2
CPO 334 w ZDDP alone SAE 0W-12 120 505 30.4 4.4% 2 1 3
CPO 334+ZDDP+IL SAE 0W-12 117 510 28.7 9.9% g 1 3

Such a significant FEI reflected the benefits of using the IL-additized oil at harsh engine operation
conditions when boundary/mixed lubrication friction has high impact.

%OAK RIDGE C. Kumara* and J. Qu*, et al., ACS Sustainable Chemistry & Engineering 9 (2021) 7198.

National Laboratory



ILs as Gear Oil Additives to Improve Durability and Efficiency

Adding 2-5% IL to oil significantly reduced rolling contact fatigue, sliding wear, and vibration

Case 1. Extreme conditions: Case 2. Moderate conditions:

2018 Gear dynamometer tests increased 6% of the
500 N,100 °C, 3.5 m/s, 3% SRR 165-350 N, 55-120 °C, 3.5 m/s, 1.5% SRR Y . . .
48 hr (42 million cycles) 3.5 hr (2.6 million cycles) power output by using an IL-additized gear oil
3500 — 200
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< 2000 A e g 80W-90 GL-5, 13
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500 ) R —
o e T 0 | | |
0 5 10 15 20 25 30 35 40 45 50 0 60 120 180 30 Gear Dyno Test Results
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2020 developed new ILs with much lower toxicity than ZDDP
and previous ILs

Survival in acute toxicity test (5 days) ILs previously de\lleloped for automotive engines
I 1
PAG + 5% PAG + 5% PAG + 5%
# of survivals NeatPAG  PAG+5%IL-1 PAG+5%IL-2 [N888H][DEHP] [P8888][DEHP] ZDDP
Day 1 10 10 10 10 10 10
Day 2 10 10 10 6 0 0 )
Day 3 10 10 10 0 0 0 R
Day 4 10 10 10 0 0 0 o
Day 5 10 10 10 0 0 0 Short-term Methods for Estimating

the Chronic Toxicity of Efflue
hr nts and
Receiving Waters to Freshwater

Organisms
Reproduction in chronic toxicity test (7 days) ot
T
# of neonates per PAG + 5% PAG + 5% PAG + 5% Fdton
day NeatPAG  PAG+5%IL-1 PAG+5%IL-2 [N888H][DEHP] [P8888][DEHP] ZDDP October 2002
Day 1 0 0 0 0 0 0
Day 2 0 0 0 0 0 0
Day 3 32 36 45 0 0 0
Day 4 2 0 13 0 0 0
Day 5 91 98 82 0 0 0
Day 6 128 159 141 0 0 0
Day 7 175 201 172 0 0 0
Grand Total 428 494 453 0 0 0

S_QOAK RIDGE J.Qu, H.M. Luo, X. He, U.S. Patent #11,760,766, 2023.
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Eco-friendly ILs for tidal turbine lubrication

« Current lubricants for tidal turbines are basically borrowed
from those for wind turbines, however lubricating a tidal
turbine are far more challenging:

— Slower speed and higher force and thus no full-film

lubrication, leading to higher wear risk, which largely rely on
the protection of the anti-wear additives in the lubricant.

— Lubricant more prone to a high water/moisture content,
causing degraded lubricity.

— Longer maintenance intervals of up to 6 years, because the
difficulties to access and maintenane.

« Conventional gear oils are harmful and pose a significant
threat to the marine ecosystems, because they would
contaminate the water directly upon spill or leak and
violate the U.S. Clean Water Act’s ‘non-sheening rule’.

* While EPA has approved multiple groups of EAL base fluids,
there is lack of additives that are both non-toxic and
effective in friction reducing and wear protection.

%OAK RIDGE Roller bearing
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Lubricity: ORNL’s new ILs demonstrated 50% reduction in
friction and wear compared with the baseline gear oil

014 — Baseline: Castrol _ Castrol Optigear oil (VGZZO) BT-mix-2 + 0.5% IL-3
i Optigear oil (VG220 T N e RN o e <
mjw Pis ( ) Steady-state s :/ Wy it > ) Slgnlflcant:Z reduced
~ : el micCro-crackin
s =SB | = ~o-1 g
':;: 0.08
g o.os—f
£ o.oa—f
0.02] : Z o T 9 ".\
OE (L . : ~50% 2287238 s " iooum
0 5,000 10,000 15,000 20,000 friction
018+ Time (9 reduction 1
] 0.9
0123 BT-mix-2 base oil +  os
. oq  0.5%IL-3 E o7 ~50% wear reduction
2 ! > 0.6 compared with the
3 E os I baseline gear oil
§ 0.6 Steady-state S s
- p ~0.05 g 03
& L
0.1
0 *Simulating the front 0
° 2000 10}?:,2(5) 9000 20,000 bearing @ 100 °C Castrol BT-mix-2 base BT-mix-2 + BT-mix-2 + BT-mix-2 +
Optigear oil  oil (VG220) 0.5% 0.5% 0.5%
(VG220) [N444H] [DBP] [N4441][DBP] [P4444][DBP]
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Toxicity: ORNL’s new ILs can be classified as ‘Not Toxic to
aquatic organisms’ based on on-going sea water toxicity tests

%

Control
Castrol Optigear VG220
PAG

Acute Toxicity Categories for
aquatic environment based on
48-hr ECs (crustacea)

* Very toxic (<=1 mg/L)
*  Toxic (1-10 mg/L)
* Harmful (10-100 mg/L)

PAG + 5% IL-3
PAG + 5% IL-1

}:_Jl> Not toxic (>100 mg/L)

Survival
1.001 = °
N
PAG + 5%
§ 0.75 ionic liquids |
2
-
()]
c 0.50
.0
o)
)
@ 0.25; Commercial PAG+5%

- gear oil Commercial
bio-derived
additives

0.001
Observation day
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PAG + 5% GA614 (EP)
PAG + 5% Cl426 (AW)

* Potential impact
o Reduce the environmental impact
o Improve the energy conversion efficiency

o Enhance the turbomachinery durability
and reliability

[2] Chemical hazard classification and labeling: comparison of OPP requirements and the GHS, 2004.




* Impact of marine water/moisture content in the lubricant?
— Marine water/moisture getting into the tidal turbine oil is inevitable during the multi-year operation.
— What's the impact on the viscosity, lubricity, and corrosion of the ionic liquid-enhanced eco-friendly
lubricants in comparison with that on the commercial baseline oils?
« Effects of lubricant aging?

— The promising results in Phase 1 were from fresh lubricants; however, lubricant aging involving oxidation,
decomposition, and reactions with the bearing/gear surfaces, is inevitable in the tidal turbine operation.

— What's the aging behavior of our ionic liquid-enhanced eco-friendly lubricants in comparison with that of
the commercial baseline oilse

» Feasibility of lower-viscosity lubricants?
— The promising results in Phase 1 were based on the same viscosity grade with the baseline gear oils.

— A lower oil viscosity is expected to reduce the hydrodynamic drag and environmental impact; however,
it inevitably posts a higher risk of wear — would the ionic liquids provide adequate wear protection to allow
the use of lower viscosity lubricants?

%OAK RIDGE
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Team and Collaborators

%

* My current tribo-team: C. Kumara, T. Grejtak, W. Wang

* Internal collaborators (long term):

o

o O O O O

CNMS: M. Chi, R. Unocic, K. Xiao, K. An
CSD: S. Dai, H. Meyer, N. Gallego

ESD: T. Mathews, L. Stevenson, P. Ku
MDF: A. Elliot, N. Niyanth, R. Dehoff
MSD: H. Luo, T. Toops, B. West

MSTD: P. Blau, J. Keiser, J. Truhan, H. Wang, L. Lin, T.
Watkins, Z. Feng, H. Bei, M. Lance, D. Leonard, B.
Armstrong, A. Shaym, D. Pierce, M. Brady, E. Lara-Curzio

* Other national labs: * Academia:
o ANL: G. Fenske, O. Ajayi o Central FL: L. An
o INL: J. Lacey, M. Kuns, D. Hartley, V. o PSU: K. Seong
Thompson, D. Thompson o TAMU: H. Liang
o NREL: E. Wolfrum, R. Elandar, S. Sheng o Temple: F. Ren
o PNNL: L. Cosimbescu, R. Cavagnaro o Ulowa: H. Ding
o SNLs: M. Dugger, V. Neary o UTK: B. Zhao

OAK RIDGE
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* Industrial partners (formal collaborations):
o Biosynthetic: M. Woodfall, M. Miller

o O 0 O 0O O O o oo 0o o o o o o

Cummins: R. England, C. Wang

Danfoss: T. Li, A. Rezaei, N. LaTray

Driven Racing Qil: L. Speed, J. Coleman
Eaton: D. Zhu, A. ElImoursi, C. Higdon

Ford: A. Gangopadhyay, H. Ghaednia, D. Uy
Forest Concepts: D. Lanning, C. McKiernan
GM: S. Tung, M. Viola

Hayward Tyler: K. Oldinski

Hyundai: I. Lyo

Lubrizol: E. Bardasz

Rawlings: J. Rawlings

Shell: B. Papke, H. Gao, D. Uy

Solvay: J. Dyck, E. Conrad, C. Chretien
Swagelok: P. Williams

Trane: W. Akram, M. Herried, A. Poslinski
Valvoline: R. England, N. Ren, J. Bonta, E. Murphy
Westinghouse: R. Lu, M. Conner

The key to success is collaboration!



Postdoc openings at ORNL

* Postdoc position 1: Surface Science and Engineering
— https://jobs.ornl.gov/job/Oak-Ridge-Postdoctoral-Research-Associate-Surface-Science-and-Engineering-TN-37830/1085481400/

— Polymer surface characterization and modification

— Including but not limited to plasma treatment, as well as investigation and mitigation of adhesion and transfer of third-body
material at contact interfaces under pressure and shear

— Subject to export control requirements: Yes

* Postdoc position 2: Thermal Degradation
— https://jobs.ornl.gov/job/Oak-Ridge-Postdoctoral-Research-Associate-Thermal-Degradation-TN-37830/1088612800/

— Organic thermal degradation in energy conversion and storage

— Development of a unique thermal-sensitive coating for alarming thermal runaway of energy storage systems including electric
vehicle batteries

— Investigation and mitigation of biomass fouling under combined thermal and mechanical stresses in biofuel preconversion

— Subject to export control requirements: No

* Contact: Jun Qu, Group Leader of Surface Engineering and Tribology, ORNL qujn@ornl.gov
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