ASME LEARNING & DEVELOPMENT

CORPORATE TRAINING COURSE CATALOG

2024-2025

Live and On Demand courses from top engineering experts
Training for Engineering Transformation

In the last century alone, the engineering industry has boldly brought us through several industrial revolutions. Great engineering achievements have positively impacted humankind. But as remarkable as these innovations are, there are many more engineering opportunities to be realized.

At ASME Learning and Development (L&D), our mission is to advance the skills and grow careers of engineering professionals and their teams. Our vision is to empower the global engineering community to solve the challenges of today and tomorrow.

Your Workforce Development Resource

ASME Learning and Development has been collaborating with engineering organizations to aid in their professional development initiatives for decades. ASME Corporate Training can upskill your team and solve for your organization’s unique needs. From working with you to standardize your business processes with best practices and boosting productivity to improving employee engagement, we can help you maximize the potential of your workforce all while growing your organization’s competitive edge.

Flexible Training for Your Team

Work with ASME Corporate Training to create a comprehensive learning solution for your workforce, built from our broad range of courses, learning paths and credentials. With technical and non-technical topics available in a variety of formats, including live and on demand, we collaborate with you to create a professional development learning solution based on your workforce’s unique schedules, preferences, responsibilities and aspirations.

Top Industry Experts

Our team of accomplished educators, with years of technical knowledge and experience, focus on you and your organization to provide targeted world-class professional engineering instruction. All of our educators are ASME-approved and meet IACET accreditation requirements. Many also serve as ASME Code Committee members and/or volunteers. Our top educators can also deliver learning experiences globally, often in multiple languages.
CONTENTS

ASME Virtual Classroom

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Dimensioning & Tolerancing</td>
<td>5</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>5</td>
</tr>
<tr>
<td>Modeling & Simulation</td>
<td>5</td>
</tr>
<tr>
<td>Design, Materials, & Analysis</td>
<td>5</td>
</tr>
<tr>
<td>Boilers & Pressure Vessels</td>
<td>6</td>
</tr>
<tr>
<td>Piping & Pipelines</td>
<td>7</td>
</tr>
<tr>
<td>Nuclear</td>
<td>8</td>
</tr>
<tr>
<td>Fluids & Heat Transfer</td>
<td>9</td>
</tr>
<tr>
<td>Welding & Brazing</td>
<td>9</td>
</tr>
<tr>
<td>Bolting</td>
<td>10</td>
</tr>
<tr>
<td>Management, Leadership, & Innovation</td>
<td>10</td>
</tr>
</tbody>
</table>

Learning Path

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>13</td>
</tr>
<tr>
<td>Piping & Pipelines</td>
<td>12</td>
</tr>
<tr>
<td>Boilers & Pressure Vessels</td>
<td>12</td>
</tr>
<tr>
<td>Bolting</td>
<td>12</td>
</tr>
<tr>
<td>Nuclear</td>
<td>13</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>13</td>
</tr>
<tr>
<td>Robotics</td>
<td>13</td>
</tr>
<tr>
<td>Management, Leadership, & Innovation</td>
<td>13</td>
</tr>
</tbody>
</table>

Guided Study

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Dimensioning & Tolerancing</td>
<td>15</td>
</tr>
<tr>
<td>Design, Materials, & Analysis</td>
<td>15</td>
</tr>
<tr>
<td>Boilers & Pressure Vessels</td>
<td>15</td>
</tr>
<tr>
<td>Nuclear</td>
<td>15</td>
</tr>
<tr>
<td>Fluids & Heat Transfer</td>
<td>15</td>
</tr>
<tr>
<td>Bolting</td>
<td>16</td>
</tr>
<tr>
<td>Welding & Brazing</td>
<td>16</td>
</tr>
<tr>
<td>Management, Leadership, & Innovation</td>
<td>16</td>
</tr>
</tbody>
</table>

Self Study

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Dimensioning & Tolerancing</td>
<td>18</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18</td>
</tr>
<tr>
<td>Boilers & Pressure Vessels</td>
<td>18</td>
</tr>
<tr>
<td>Piping & Pipelines</td>
<td>19</td>
</tr>
<tr>
<td>Nuclear</td>
<td>19</td>
</tr>
<tr>
<td>Fluids & Heat Transfer</td>
<td>20</td>
</tr>
<tr>
<td>Gas Turbines</td>
<td>20</td>
</tr>
<tr>
<td>Bolting</td>
<td>20</td>
</tr>
<tr>
<td>Management, Leadership, & Innovation</td>
<td>20</td>
</tr>
<tr>
<td>Bioprocess</td>
<td>21</td>
</tr>
<tr>
<td>Robotics</td>
<td>21</td>
</tr>
</tbody>
</table>
ASME VIRTUAL CLASSROOM
Live online courses with an instructor and peers.

Remote Learning Reinvented

ASME Virtual Classroom is a live instructor-led learning solution that provides working professionals with an enhanced classroom learning experience through video conferences with ASME’s world-class instructors, collaboration with peers, discussion boards, online assessments, and much more.

With thousands of hours of successful virtual instruction already logged, ASME Learning & Development is poised to provide you with training you can trust.

ASME Virtual Classroom delivers an enhanced online learning experience with:

- Real-time live learning from expert instructors
- Interactive Q&A
- Discussion boards, polls and surveys
- Online assessments (when applicable)
- Digital access to course material
- Digital certificate of completion
- Collaboration with peers

“THE COURSE MATERIAL, INSTRUCTOR, AND MODERATOR WERE EXCELLENT”
VCPD570
Geometric Dimensioning & Tolerancing Fundamentals
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Read and create engineering drawings and interpret design intent per ASME Y14.5 - Geometric Dimensioning and Tolerancing (GD&T).

VCPD603
ASME Y14.5 Geometric Dimensioning and Tolerancing (GD&T) Design and Applications Combo Course
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Gain a comprehensive understanding of Geometric Dimensioning and Tolerancing (GD&T) and apply it to your designs and stacks per ASME Y14.5.

VCPD661
Geometric Tolerancing Applications and Tolerance Stacks
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Apply Geometric Dimensioning and Tolerancing (GD&T) to your designs and perform tolerance stacks through authentic case studies.

VCPD673
Design and Selection of Heat Exchangers
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Select and size heat exchangers for a given duty with various methods of analysis, advantages & disadvantages, and design considerations.

VCPD866
Geometric Dimensioning and Tolerancing for Quality, Inspection and Reporting
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
This course focuses on how to apply Geometric Dimensioning and Tolerancing (GD&T) in inspection and apply content from the ASME Y14.45-2021 Standard for Measurement Data Reporting.

VCPD774
ASME Y14.5 GD&T Fundamentals Training
PDHs: 22.5 CEUs: 2.3 Format: Virtual Classroom
Learn the basics of Geometric Dimensioning & Tolerancing (GD&T) at ASME Y14.5 Fundamentals Training Workshop. Educate yourself with ASME virtual classroom.

VCPD776
Fundamentals of Finite Element Analysis
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Explain and use introductory Finite Element Analysis (FEA) concepts underlying the creation of elements to make accurate approximations.

VCPD679
Problem-solving for Engineers: Root Cause Analysis Fundamentals
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Learn root cause analysis (RCA) fundamentals, explore RCA tools’ purpose and application, and perform RCA on real-world problems to find solutions.
VCPD865 Additive Manufacturing: Laser Powder Bed Fusion
PDHs: 18 CEUs: 1.8 Format: Virtual Classroom
This course focuses on how to apply Geometric Dimensioning and Tolerancing (GD&T) in inspection and apply content from the ASME Y14.45-2021 Standard for Measurement Data Reporting.

VCPD842 Probabilistic and Uncertainty Quantification Methods for Model Verification & Validation
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Articulate precise approximation & assumption statements, quantify the total uncertainty, and make risk-informed decisions with any model.

VCPD843 Verification & Validation of Models and Simulations Combo Course
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Verify, validate, and quantify uncertainty, assess credibility, and make risk-informed decisions for models and simulations.

VCPD841 Verification and Validation in Scientific Computing
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Learn techniques and methods for verification of numerical simulations, validation of mathematical models, and quantify uncertainty in simulations.

VCPD395 IAPI 579-1/ASME FFS-1 Fitness for Service
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Apply the requirements of API 579/ASME FFS-1 to make run, repair, and replacement decisions for pressure vessels, piping, and tanks.

VCPD441 Inspection, Repair and Alterations of In-Service Pressure Equipment
PDHs: 9 CEUs: 0.9 Format: Virtual Classroom
Apply various requirements to the inspection, repair and alteration of in-service pressure vessels and equipment.

VCPD442 ASME BPV Code, Section VIII, Division 1: Design and Construction
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Understand and apply ASME’s BPV Code, Section VIII, Division 1 to pressure vessel design and construction.

VCPD443 ASME BPV Code, Section VIII, Division 1: Pressure Vessel Combo Course
PDHs: 32 CEUs: 3.2 Format: Virtual Classroom
Leverage the requirements of Section VIII, Div 1, including design, materials, fabrication, testing and inspection of pressure vessels.

VCPD077 Failure Prevention, Fitness-for-Service, Repair and Life Extension of Piping, Vessels and Tanks
PDHs: 20 CEUs: 2 Format: Virtual Classroom
Apply fitness-for-service assessment methods to make run-or-repair decisions on pressure equipment, piping and pipelines.

VCPD583 Pressure Relief Devices: Design, Sizing, Construction, Inspection & Maintenance
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Understand the design, construction, installation, operation, inspection and maintenance of pressure relieving devices.
VCPD769
ASME/API Boilers and Fired Pressure Equipment Operation and Maintenance
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Gain knowledge of boiler operation and maintenance per the requirements of ASME BPVC Sections I, III, IV, VI, VII, and VIII.

VCPD770
Boilers and Fired Pressure Equipment Inspection, Repairs, and Alterations Industry Best Practices
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Gain knowledge of boiler inspection and methods for repairs and alterations in compliance with ASME BPV, NBIC and API regulations.

VCPD771
ASME BPVC, API and NBIC Boiler Operation, Maintenance, Inspection, Repairs, and Alterations Combo Course
PDHs: 38 CEUs: 3.8 Format: Virtual Classroom
Comply with BPVC codes to safely operate and maintain boilers throughout their lifecycle from operation & inspection to repairs & alterations.

VCPD837
ASME B31.3 and B31.1 Practical Piping Design for Process and Power Applications
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Apply the requirements of B31.3 and B31.1 to design, analysis, materials, fabrication, testing, and inspection for process and power piping systems.

VCPD014
ASME B31.3 Process Piping Design
PDHs: 25 CEUs: 2.5 Format: Virtual Classroom
Understand and apply the ASME B31.3 Process Piping requirements to effectively and safely design process piping systems.

VCPD643
ASME B31.3 Process Piping Code
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Apply the requirements of ASME B31.3 to design, analysis, materials, fabrication, testing and inspection of process piping systems.

VCPD457
ASME B31.3 Process Piping, Materials Fabrication, Examination, and Testing
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Explore materials, fabrication, examination, and testing per the requirements of ASME B31.3 Process Piping.

VCPD838
ASME B31.1 Power Piping Design
PDHs: 25 CEUs: 2.5 Format: Virtual Classroom
Understand and apply the ASME B31.1 requirements to power piping system design and analysis including criteria, requirements and failure modes.

VCPD839
ASME B31.1 Power Piping Materials Fabrication, Examination & Testing
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Explore the background and meet the requirements of ASME B31.1 focusing on power piping construction and maintenance.

VCPD763
Centrifugal Pumps: Testing, Design, and Analysis
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Understand and apply key principles, design methods, and analysis strategies related to centrifugal pumps for piping systems and pipelines.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>PDHs</th>
<th>CEUs</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPD370</td>
<td>ASME B31.8 Gas Transmission & Distribution Piping Systems</td>
<td>23</td>
<td>2.3</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD391</td>
<td>ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids</td>
<td>15</td>
<td>1.5</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD410</td>
<td>Detail Engineering of Piping Systems</td>
<td>23</td>
<td>2.3</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD677</td>
<td>Pipe Sizing, Pipe Wall Stresses, and Water Hammer</td>
<td>23</td>
<td>2.3</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD738</td>
<td>Fundamentals of Process Plant and Plant Layout</td>
<td>15</td>
<td>1.5</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD739</td>
<td>Fundamentals of Piping, Pipeline Engineering, and Pigging Systems</td>
<td>15</td>
<td>1.5</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD675</td>
<td>ASME NQA-1 Lead Auditor Training</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD606</td>
<td>ASME NQA-1 Requirements for Computer Software used in Nuclear Facilities</td>
<td>15</td>
<td>1.5</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD615</td>
<td>Nuclear Piping Systems ASME BPV Code, Section III and B311: Design, Integrity, Operability Assessment, and Repairs</td>
<td>20</td>
<td>2</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCPD618</td>
<td>ASME BPV Code Section III, Division 1: Rules for Construction of Nuclear Facility Components and USNRC Regulations</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
</tr>
</tbody>
</table>

PIPING & PIPELINES VIRTUAL CLASSROOM

Gain an understanding of ASME B31.8, including design, operation, maintenance, and repair of natural gas distribution and transmission pipelines.

Adhere to principles of ASME B31.4 Code for the design, construction, and operation of liquid pipeline systems while minimizing risks.

Develop Piping and Instrumentation Diagrams (P & ID)s, plot plans, and arrangements for process, power and utility equipment piping systems.

Understand the relationship between pipe wall stresses and the changes in fluid pressure and velocity to predict and prevent pipe wall failure.

Learn the fundamentals of process plant and plant layout, including process flow diagrams, equipment layouts, and P&IDs with this comprehensive guide.

Master the Fundamentals of piping & pipeline engineering and pigging systems by taking ASME’s professional course, from design to construction to operation.

Review auditing program methods and techniques to conduct audits of nuclear quality assurance programs per ASME NQA-1 and N45.2.23 auditors.

Learn to apply NQA-1 to the practice of developing, using, maintaining or procuring software used in nuclear facilities.

Apply ASME Section III, Division 1, Subsections NB/NC/ND to the design, analysis, and qualification of nuclear power plant piping systems.

Explore Section III, Division 1, how it interfaces with other BPVC sections, and how it is implemented by the US NRC in its regulations.
VCPD146
Flow Induced Vibration with Applications to Failure Analysis
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Learn and apply the latest design and analysis tools for the prediction and prevention of vibration in structures exposed to high energy fluid flow.

VCPD679
Fundamentals of Pumps and Valves and Their Selection for Optimum System Performance
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Learn the fundamentals, selection, installation, operation, maintenance, and troubleshooting of pumps and valves.

VCPD359
Practical Welding Technology
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Understand welding technology, including applicable codes and standards, principles, procedures, symbols, material selection and preheat.

VCPD645
ASME BPV Code, Section IX: Welding, Brazing, & Fusing Qualifications
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Comply with the requirements of ASME Section IX rules for qualification of welding and brazing procedures and personnel.

VCPD386
Design of Bolted Flange Joints
PDHs: 8 CEUs: 0.8 Format: Virtual Classroom
Understand and apply ASME codes and standards for bolted flange joints, specifically flange design for pressure vessels and piping.

VCPD539
Bolted Joints and Gasket Behavior
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Understand bolted joint fundamentals and gasketed joint torque factors, bolting patterns, and gasket behavior, tightness, selection and specification.

VCPD577
Bolted Joint Assembly Principles Per ASME PCC-1-2019
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Identify the principles of joint design, assembly, and reliability per ASME PCC-1 2019.

VCPD601
ASME PCC-1 Bolted Joints and Gaskets Design, Assembly, and Reliability Combo Course
PDHs: 38 CEUs: 3.8 Format: Virtual Classroom
Master bolted joints and gasket design, behavior and assembly principles per ASME PCC-1 2019.

VCPD513
TRIZ: The Theory of Inventive Problem Solving
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Create breakthrough innovations by leveraging patterns documented in the world’s most inventive patents with TRIZ.

VCPD475
The Engineering Manager: Engaging Today’s Workforce
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Implement essential management skills, tackle common challenges engineering managers encounter and reach high levels of performance.
VCPD676
Strategic Thinking in Times of Change
PDHs: 8
CEUs: 0.8
Format: Virtual Classroom
Develop a strategic mindset, approach challenges with innovation and employ strategic thinking to add value to your organization.

VCPD467
Project Management for Engineers and Technical Professionals
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Apply key PMI project management concepts, including big-picture thinking, repeatable processes, and increased efficiency.

VCPD794
Agile Project Management
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Build critical knowledge of Agile guidelines from PMI / PMBOK, including hitting results in minimum time and the fail fast mantra.

VCPD836
Traditional and Agile Project Management for Engineers and Technical Professionals Combo Course
PDHs: 38
CEUs: 3.8
Format: Virtual Classroom
Learn both traditional and agile project management methodologies and gain a robust skillset for every engineering project or situation.

VCPD850
Communicating and Problem Solving for Today’s Engineering
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Bridge the communications gap and navigate all business situations more effectively with key interpersonal skills.

VCPD851
Managing Others in Times of Change
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Reduce the impact of accelerated change, influence others and mitigate common leadership challenges.
NEW ON DEMAND LEARNING PATHS

Learning Paths offer a combination of courses organized by our team into a recommended learning sequence.

CHOOSE FROM COURSES ON Y14.5 GEOMETRIC DIMENSIONING & TOLERANCING (GD&T), BPVC SECTION VIII, B31 POWER & PROCESS PIPING, NUCLEAR POWER PLANT COMPONENTS, AND MORE
LP07
ASME Y14.5 Geometric Dimensioning and Tolerancing (GD&T) Fundamentals Learning Path

PDHs: 38 CEUs: 3.5 Format: Learning Path

This ASME Geometric Dimensioning and Tolerancing (GD&T) Learning Path consisting of 3 On Demand courses where students learn read and create engineering drawings and interpret design intent per ASME Y14.5.

LP02
Design for Additive Manufacturing with Metals Professional Package

PDHs: 20 CEUs: 2 Format: Learning Path

Discover Additive Manufacturing’s role in the design of products, parts and components in ASME’s Design for Additive Manufacturing with Metals Learning Path.

LP10
Design, Fabrication and Fitness-for Service of Pressure Equipment Learning Path

PDHs: 29 CEUs: 2.9 Format: Learning Path

LP08
Design and Analysis of Piping Systems and Operability Assessment of Nuclear Power Plant Components

PDHs: 42 CEUs: 4.2 Format: Learning Path

Understand the design and analysis of piping systems and operability assessment of Nuclear Power Plant components consistent with ASME BPV Code, Section III and B311 and Section XI.

LP03
Design for Additive Manufacturing with Metals Use Cases Package

PDHs: 6 CEUs: 0.6 Format: Learning Path

Apply Additive Manufacturing design concepts with three common AM use cases: Replication, Adaptation, and Optimization.

LP06
ASME BPV Code, Section VIII, Division 1: Pressure Vessel Learning Path

PDHs: 22 CEUs: 2.2 Format: Learning Path

Gain a comprehensive understanding of Section VIII, Div 1, requirements including design, materials, fabrication, testing and inspection of pressure vessels in this On Demand Learning Path.

LP10
ASME Self Study All Access Learning Path

PDHs: 290.5 CEUs: 24 Format: Learning Path

Enhance your skills and knowledge with these ASME Codes and Standards eLearning courses in this ASME Self-Study All Access Learning Path.
GUIDED STUDY COURSES

Online learning augmented with instructor-led activities and/or graded assignments to complete at your own pace. Courses run in 6-week sessions.

BUILD IN-DEMAND SKILLS AND LEARN HOW TO SOLVE REAL-WORLD CHALLENGES ON YOUR OWN SCHEDULE
EL505
Introduction to Geometric Dimensioning & Tolerancing (GD&T) Y14.5
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn introductory geometric dimensioning controls for mechanical engineering drawings per ASME Y14.5 Dimensioning and Tolerancing standard.

EL506
Advanced Geometric Dimensioning and Tolerancing (GD&T) Y14.5
PDHs: 23 CEUs: 2.3 Format: Guided Study
Gain advanced knowledge of geometric dimensioning controls for mechanical engineering drawings per the ASME Y14.5 Dimensioning and Tolerancing standard.

EL507
Introduction to Finite Element Analysis
PDHs: 23 CEUs: 2.3 Format: Guided Study
Explain and use introductory Finite Element Analysis (FEA) concepts underlying the creation of elements to make accurate approximations.

EL508
Advanced Finite Element Analysis
PDHs: 23 CEUs: 2.3 Format: Guided Study
Identify and demonstrate advanced Finite Element Analysis (FEA) skills including command-line input for Abaqus and design optimization in Abaqus.

EL501
ASME BPV Code, Section VIII, Division 1: Design & Fabrication of Pressure Vessels
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn the rules for pressure vessel design and construction, with an overview of the requirements of Section VIII, Division 1.

EL502
ASME BPV Code, Section VIII, Division 2: Design & Fabrication of Pressure Vessels
PDHs: 23 CEUs: 2.3 Format: Guided Study
Describe the use of alternative rules for the design and fabrication of pressure vessels given in ASME BPV Code, Section VIII, Division 2.

EL503
Overview of In-service Codes for Inspections, Repairs and Alterations of Pressure Equipment
PDHs: 15 CEUs: 1.5 Format: Guided Study
Understand the requirements of inspection, repairs and alterations of pressure equipment per NBIC, API-510, and API-579.

EL509
Computational Fluid Dynamics
PDHs: 23 CEUs: 2.3 Format: Guided Study
Gain an introduction to the principles and applications of CFD and apply the knowledge into use on commercial CFD codes, particularly ANSYS Fluent.

EL510
Two Phase Flow and Heat Transfer
PDHs: 23 CEUs: 2.3 Format: Guided Study
Gain a phenomenological understanding of two-phase flow and heat transfer in engineering processes and components and compute two-phase flow and heat transfer.

EL512
The Bolted Joint
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn the fundamentals of bolts and bolted joints, including their strength, behavior, design approaches and failure prevention.
EL515 Principles of Welding
PDHs: 23 CEUs: 2.3 Format: Guided Study
Understand introductory principles of welding technology, process of welding and how it affects welded materials and structures.

EL511 Project Management for Engineers
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn engineering project management skills including planning and implementing projects, communication strategies and overcoming lack of resources and impediments.
SELF STUDY COURSES

100% online independent learning at your own pace. Learners can enroll and start at any time. Courses are accessible for 90 days.

GET FLEXIBLE PROFESSIONAL DEVELOPMENT ON TECHNICAL AND NON-TECHNICAL TOPICS
EL559
ASME GD&T Fundamentals / ASME Y14.5 - 2018 Course (On Demand)
PDHs: 12 CEUs: 1.2 Format: Self Study
Read and create engineering drawings and interpret design intent per the latest version of ASME Y14.5 - Geometric Dimensioning and Tolerancing (GD&T) in this On Demand course.

EL560
Drawing Interpretation
PDHs: 23 CEUs: 2.3 Format: Self Study
Understand basic mechanical two-dimensional engineering drawings, drawing elements, part and section views, dimensions, tolerances, finish and welding symbols.

ZABC73
Y14.5-2018 Dimensioning and Tolerancing Overview
PDHs: 3 Format: Self Study
Overview of the contents and guidelines outlined in the ASME Y14.5 - 2009 Dimensioning and Tolerancing Standard

AM210
Design for Additive Manufacturing with Metals
PDHs: 10 CEUs: 1 Format: Self Study
Learn key foundational knowledge to design for Additive Manufacturing (AM) with metals.

AM214
Additive Manufacturing Manufacturability: Laser Powder Bed Fusion
PDHs: 4 CEUs: 0.4 Format: Self Study
Prepare for part manufacturability with Laser Powder Bed fusion (L-PBF).

AM223
Additive Manufacturing Material Properties
PDHs: 5 CEUs: 0.5 Format: Self Study
Understand materials properties for L-PBF parts including variability in material properties and how to account for this variability.

EL554
Introduction to ASME BPV Code, Section VIII, Division 1 (On Demand)
PDHs: 15 CEUs: 1.5 Format: Self Study
Understand and apply ASME's BPV Code, Section VIII, Division 1 to pressure vessel design and construction in this On Demand course.

EL556
ASME BPV Code, Section VIII, Division 2: Design & Fabrication of Pressure Vessels (On Demand)
PDHs: 17 CEUs: 1.7 Format: Self Study
Understand and use the alternative rules for the design and fabrication of pressure vessels per Section VIII, Division 2 in this On Demand Course.

EL555
Inspection, Repair, and Alterations of In-Service Pressure Equipment (On Demand)
PDHs: 7 CEUs: 0.7 Format: Self Study
Apply various requirements to the inspection, repair and alteration of in-service pressure vessels and equipment in this On-Demand course.

EL548
Failure Prevention, Fitness-for-Service, Repair and Life Extension of Piping, Vessels and Tanks
PDHs: 14 CEUs: 1.4 Format: Self Study
Learn methods and criteria of ASME B31, ASME VIII, API 579-1/ASME FFS-1, ASME PCC-2, NBIC parts 2 and 3, to make run-or-repair decisions on pressure equipment, piping and pipelines.
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>PDHs</th>
<th>CEUs</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZABC17</td>
<td>Essentials - BPV Code, Section V: Nondestructive Examination</td>
<td>3</td>
<td></td>
<td>Self Study</td>
<td>Learn about the various applications of ASME BPV, Section V - Nondestructive Examination (NDE).</td>
</tr>
<tr>
<td>ZABC9</td>
<td>ASME Boiler & Pressure Vessel Certification Process</td>
<td>3</td>
<td></td>
<td>Self Study</td>
<td>Learn about ASME Conformity Assessment, the process for ASME Certification, and the requirements for obtaining non-nuclear Code Stamps.</td>
</tr>
<tr>
<td>ZABC59</td>
<td>Essentials - PCC-2 Repair of Pressure Equipment & Piping</td>
<td>3</td>
<td></td>
<td>Self Study</td>
<td>Review the contents of ASME’s PCC-2 Standard, and learn about the repair of pressure equipment and piping.</td>
</tr>
<tr>
<td>ZABC15</td>
<td>ASME B31.3 Process Piping Code Overview (Online Course)</td>
<td>2</td>
<td></td>
<td>Self Study</td>
<td>Introduction to the B31.3 Process Piping Code, how piping systems function and what the Code requirements are for various types of installations.</td>
</tr>
<tr>
<td>ZABC14</td>
<td>ASME B31.1 Power Piping Code Overview (Online Course)</td>
<td>2</td>
<td></td>
<td>Self Study</td>
<td>Introduction to the B311 Power Piping Code, and its relationship with ASME BPV Code, Section I.</td>
</tr>
<tr>
<td>ZABC12</td>
<td>Essentials - B31.8 Gas Transmission and Distribution Piping Systems</td>
<td>2</td>
<td></td>
<td>Self Study</td>
<td>Overview of the scope of B31.8, including its history, the types of systems to which it applies, its organization, and the intended use of the Code.</td>
</tr>
<tr>
<td>EL551</td>
<td>Nuclear Piping Systems ASME BPV Code, Section III and B311: Design, Integrity-Operability Assessment, and Repairs</td>
<td>15</td>
<td>1.5</td>
<td>Self Study</td>
<td>Apply ASME Section III Division 1 Subsections NB/NC/ND to the design, analysis, and qualification of nuclear power plant piping systems in this On Demand course.</td>
</tr>
<tr>
<td>EL549</td>
<td>ASME BPV Code, Section XI: Inservice Inspection of Nuclear Power Plant Components</td>
<td>27</td>
<td>2.7</td>
<td>Self Study</td>
<td>Understand ASME Section XI rules for in-service inspection, maintenance, testing, and the regulatory requirements of nuclear power plant components.</td>
</tr>
<tr>
<td>ZABC29</td>
<td>NQA-1 Practical Application</td>
<td>4</td>
<td></td>
<td>Self Study</td>
<td>Review practical application of NQA-1 focusing on five of the principal requirements.</td>
</tr>
</tbody>
</table>
ZABC5
NQA-1 Part 1 – 18 QA Requirements
PDHs: 4 Format: Self Study
Overview of the ASME NQA-1 Nuclear Quality Assurance Standard and an in-depth look at Part I

EL540
Basic Gas Turbine Engine Technology Online Self-Study Course
PDHs: 10 Format: Self Study
Review the fundamental nature of gas turbine engines and the processes that affect their performance

ZABC42
Introduction to the Selection of Pumps
PDHs: 2 Format: Self Study
Introduction to pumps – the way they work, different types, and some basic applications

ZABC43
Introduction to the Selection of Valves
PDHs: 2 Format: Self Study
Overview of the considerations involved when choosing the appropriate valves for a system

EL562
ASME BPV Code, Section IX: Welding, Brazing, & Fusing Qualifications (On Demand)
PDHs: 30 CEUs: 3 Format: Self Study
Learn about ASME’s BPV Code Section IX welding, brazing & fusing qualifications with ASME e-learning. Enroll now to advance your skills and expertise.

EL564
Overview of QPS (Quality Program for Suppliers) General Industry
PDHs: 10 CEUs: 0.1 Format: Self Study
Understand the requirements that are needed to complete QPS (Quality Program for Suppliers) Certification. Enhance your skills & knowledge with ASME eLearning.

ZABC13
Essentials - Bioprocessing Equipment (BPE)
PDHs: 2 Format: Self Study
Learn how this ASME BPE Standard has improved the manufacturing practices of the bioprocessing and pharmaceutical industries.

IAR210
Assessing Suitability for Robotics in Manufacturing: A Case Study
PDHs: 10 CEUs: 1 Format: Self Study
Review, select, and plan the successful integration of a robot to automate a portion of an industrial process through a real-world case study.

IAR211
Fundamentals of Industrial Automation
PDHs: 2 CEUs: 0.2 Format: Self Study
Understand the techniques used in industrial automation with robotics and make suggestions for appropriate types of robotics hardware.
ENGINEERING WORKPLACE ESSENTIALS SELF STUDY

ZABC2
Technical Writing for Engineers: Giving Readers What They Need
PDHs: 4 Format: Self Study
Learn techniques to cater your technical documents to a broad audience.

ZABC3
Ethics for Engineers: Doing the Right Thing When No One is Looking
PDHs: 3 Format: Self Study
Review the professional code of ethics that shapes engineering principles and identify your ethical concerns.

ZABC01
Introduction to ASME Standards & Certification
PDHs: 2 Format: Self Study
Introduction to standards: why we have them, the process for creating them, and who is responsible for maintaining them.

IN PERSON LEARNING

In Person learning is now available for individuals and teams.

To register for in person learning for your personal professional development please visit go.asme.org/inperson

To learn more about getting hands on, in person training for your team, contact learningsolutions@asme.org or visit go.asme.org/corporatetraining
Learn more about how we can help you achieve your workforce development goals:

Contact learningsolutions@asme.org or visit go.asme.org/evolve