Hydraulic Turbines and Pump-Turbines

Performance Test Codes
This Code will be revised when the Society approves the issuance of a new edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Code. Interpretations are published on the Committee web page and under http://go.asme.org/InterpsDatabase. Periodically certain actions of the ASME PTC Committee may be published as Cases. Cases are published on the ASME website under the PTC Committee Page at http://go.asme.org/PTCcommittee as they are issued.

Errata to codes and standards may be posted on the ASME website under the Committee Pages to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in codes and standards. Such errata shall be used on the date posted.

The PTC Committee Page can be found at http://go.asme.org/PTCcommittee. There is an option available to automatically receive an e-mail notification when errata are posted to a particular code or standard. This option can be found on the appropriate Committee Page after selecting “Errata” in the “Publication Information” section.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Two Park Avenue, New York, NY 10016-5990

Copyright © 2021 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
CONTENTS

Notice .. vii
Foreword .. viii
Committee Roster .. x
Correspondence With the PTC Committee ... xi

Section 1 Object and Scope
- 1-1 Object ... 1
- 1-2 Scope .. 1
- 1-3 Uncertainties ... 1

Section 2 Definitions and Descriptions of Terms
- 2-1 Definitions ... 2
- 2-2 International System of Units (SI) .. 2
- 2-3 Tables and Figures ... 2
- 2-4 Physical Properties .. 3
- 2-5 Reference Elevation, Z_c ... 3
- 2-6 Centrifugal Pumps ... 3
- 2-7 Subscripts Used Throughout the Code ... 3

Section 3 Guiding Principles
- 3-1 General ... 16
- 3-2 Preparations for Testing .. 16
- 3-3 Tests ... 18
- 3-4 Instruments .. 19
- 3-5 Operating Conditions ... 19
- 3-6 Data Records .. 20

Section 4 Instruments and Methods of Measurement
- 4-1 General ... 23
- 4-2 Data Acquisition and Data Processing ... 23
- 4-3 Head and Pressure Measurement ... 26
- 4-4 Flow Measurement ... 31
- 4-5 Thermodynamic Method for Measuring Efficiency .. 57
- 4-6 Power Measurement ... 63
- 4-7 Speed Measurement ... 68
- 4-8 Time Measurement ... 68

Section 5 Computation of Results
- 5-1 Measured Values: Data Reduction ... 69
- 5-2 Conversion of Test Results to Specified Conditions 69
- 5-3 Evaluation of Uncertainty ... 71
- 5-4 Comparison With Guarantees ... 71
Section 6 Final Report ... 72
 6-1 Components of the Final Report 72

Section 7 Uncertainty .. 73
 7-1 Basis for Uncertainty Calculation 73
 7-2 Summary of Methodology .. 73
 7-3 General Approach With Turbine Efficiency Example 73

Mandatory Appendix
 I Tables of Physical Properties .. 80

Nonmandatory Appendices
 A Relative Flow Measurement — Index Test 94
 B Net Head and NPSH Determination in Special Cases 101
 C Acoustic Scintillation Method of Discharge Measurement 104
 D Derivation of the Pressure–Time Flow Integral for Numerical Integration 114
 E Recommendations for Testing Aerating Turbines for Dissolved Oxygen Improvement . 116

Figures
 2-3-1 Head Definition, Measurement and Calibration, Vertical Shaft Machine With Spiral Case and Pressure Conduit ... 10
 2-3-2 Head Definition, Measurement and Calibration, Vertical Shaft Machine With Semi-Spiral Case 11
 2-3-3 Head Definition, Measurement and Calibration, Bulb Machine 12
 2-3-4 Head Definition, Measurement and Calibration, Horizontal Shaft Impulse Turbine (One or Two Jets) ... 13
 2-3-5 Head Definition, Measurement and Calibration, Vertical Shaft Impulse Turbine 14
 2-5-1 Reference Elevation, \(Z_c \), of Turbines and Pump-Turbines 15
 3-5.3-1 Limits of Permissible Deviations From Specified Operation Conditions in Turbine Mode 21
 3-5.3-2 Limits of Permissible Deviations From Specified Operating Conditions in Pump Mode . 22
 4-2.4.3.1-1 Time Delay .. 26
 4-2.4.3.1-2 Filtering and Sampling Frequencies 26
 4-3.14-1 Pressure Tap ... 29
 4-3.14-2 Pressure Plate Tap .. 30
 4-3.15-1 Calibration Connections for Pressure Gages or Pressure Transducers 31
 4-4.3.9-1 Example of Digital Pressure–Time Signal in a Short Conduit 38
 4-4.3.9-2 Example of Digital Pressure–Time Signal in a Long Conduit 38
 4-4.4.1-1 Ultrasonic Method: Diagram to Illustrate Principle 41
 4-4.4.1-2 Ultrasonic Method: Typical Arrangement of Transducers for an Eight-Path Flowmeter in a Circular Conduit ... 41
 4-4.4.3-1 Ultrasonic Method: Typical Arrangement of Transducers 43
 4-4.4.4-1 Distortion of the Velocity Profile Caused by Protruding Transducers 44
 4-4.4.6-1 Ultrasonic Method: Typical Arrangement of Transducers for an 18-Path Flowmeter in a Circular Conduit .. 47
 4-4.4.6-2 Ultrasonic Method: Typical Arrangement of Transducers for an 18-Path Flowmeter in a Rectangular Conduit ... 48
 4-4.5.1-1 Schematic Representation of Dye Dilution Technique 50
 4-4.5.1-1 Locations for Measurements of \(D \) .. 50