CONTENTS

Dedication	iii
Acknowledgements	v
Contributor Biographies	vii
Preface	xxv
Introduction	xxvii

PART 1: GLOBAL APPLICATIONS OF ASME B&PV CODES: North America and Western Europe

. .

CHAPTER 1 Canadian Boiler and Pressure Vessel Standards

Wolf Reinhardt, Nick van den Brekel,

and I	Douglas Rodgers	1-1
1.1	Introduction	1-1
1.2	Overview of Canadian Standards	
	Governing Boilers and Pressure Vessels	1-2
1.3	CSA Non-Nuclear Boiler, Pressure Vessel,	
	and Piping Design and Construction Standards	1-11
1.4	CSA Nuclear Boiler and Pressure Vessel	
	Design and Construction Standards	1-18
1.5	CSA Nuclear Boiler and Pressure Vessel	
	In-Service Inspection Standards	1-28
1.6	Addressing Plant Life Extension	
	in Canadian Nuclear Standards	1-36
1.7	Conclusions and Outlook	1-37
1.8	Acknowledgments	1-37
1.9	References	1-38

CHAPTER 2 Perspectives of the Pressure Equipment Directive with Respect to ASME BPVC

Anne Chaudouet, Stuart W. Cameron, Francis Osweiller, Peter Hanmore, and Guido G. Karcher......2-1

2.1	Introduction	2-1
2.2	The European Context	2-1
2.3	Development of the PED	2-2
2.4	The PED	2-4
2.5	Guidelines	2-18
2.6	Link of PED with Codes and Standards	2-18
2.7	Points of Comparisons with the ASME Code	2-20
2.8	Conclusions	2-22
2.9	References	2-23

CHAPTER 3 French Codes Dealing with Pressure Equipment

Anne Chaudouet, Francis Osweiller, Alain Bonnefoy, Aurélien Di Rienzo, Philippe Malouines, Jean-Marie Grandemange, Gerard Perraudin, and Bernard Pitrou3-1 3.1 Introduction 3-1 **3.2** Overview of French Codes Devoted to the Non-Nuclear Sector 3-1 3.3 Overview of French Codes Devoted to the Nuclear Sector 3-3 CODAP[®] 3-8 3.4 0 00 3.5

3.5	CODETI	3-23
3.6	COVAP®	3-34
3.7	Recommendations for the Maintenance	
	of Pressure Equipment	3-41
3.8	RCC-M	3-45
3.9	Conclusions	3-61

3.10 Abbreviations Used in This Chapter 3-62

CHAPTER 4 UK Rules for Unfired Pressure Vessels

David	H. Nash	4-1
4.1	Introduction	4-1
4.2	PD5500	4-3
4.3	EN 13445	4-16
4.4	References	4-22

CHAPTER 5 Belgium Pressure Equipment Regulation

Luc H. Geraets and Damien Couplet......5-1

Introduction	5-1
Belgium Pressure Equipment Regulation	5-1
Implementation of a Legal Rulemaking Process	5-4
Quality Groups, Classes,	
and Applicable Codes	5-4
Transposition of ASME Code—Section XI	5-4
Evolution of the Rules	
and Experience Feedback	5-12
Acknowledgment	5-13
References	5-13
Appendices	5-15
	Belgium Pressure Equipment Regulation Implementation of a Legal Rulemaking Process Quality Groups, Classes, and Applicable Codes Transposition of ASME Code—Section XI Evolution of the Rules and Experience Feedback Acknowledgment References

CHAPTER 6 Boiler and Pressure Vessels in Germany

Diete	r Kreckel	6-1
6.1	Introduction	6-1
6.2	European Directive (PED) and German Legal Adaptations	6-1
6.3	Nuclear Regulations of Pressure Vessels	
	Applied to German NPP	6-2
6.4	Nuclear Regulations for Pressure Vessels	
	Applicable to New NPP for Potential Export	6-2
6.5	Conclusions	6-5
6.6	References	6-9
6.7	Other Relevant Information	6-10

CHAPTER 7 Pressure Equipment Regulations, Codes and Standards in Spain

Carlo	os Cueto-Felgueroso	7-1
7.1	Introduction	7-1
7.2	Spanish Regulation in the Non-Nuclear Industry	7-1
7.3	Codes and Standards in the Nuclear Industry	7-5
7.4	Conclusions	7-12
7.5	References	7-12

CHAPTER 8 Risk-Informed Licensing, Regulation, and Safety Management of NPPs in Finland

Reino Virolainen, Kaisa Simola, Ari Julin,

and C	Dlavi Valkeajärvi	8-1
8.1	Introduction	8-1
8.2	Risk-Inform Regulatory Frame	8-1
8.3	PRA in the Regulatory Process	8-2
8.4	Risk-Informed In-Service Inspection	
	Applications in Finland	8-6
8.5	Experiences of Olkiluoto 3 NPP	
	Risk-Informed Licensing	8-10
8.6	Extension of Risk-Informed Activities	8-13
8.7	Summary and Conclusions	8-13
8.8	Acknowledgments	8-14
8.9	References	8-14
8.10	Acronyms	8-15

PART 2: GLOBAL APPLICATIONS OF ASME B&PV CODES: Central and Eastern Europe

CHAPTER 9 Some Aspects of Russian Regulation and Codes in Nuclear Power

	r V. Kostarev, Alexey M. Berkovsky, Alexander V. Sudakov	.9-1
9.1	Brief History of Regulatory Activity	
	and Boiler Codes in Russia	9-1
9.2	System and a List of Standards Relevant	
	to the State Safety Regulation in Nuclear Power	9-2
9.3	Development and Actual State	
	of Nuclear Codes for Design and Analysis	
	of NPPS Equipment and Piping	9-3

9.4 9.5	Comparison of Russian Nuclear Standard PNAE with ASME BPVC in Application to Seismic Analysis of a Primary Loop of PWR (WWER) Reactor European High Viscous Dampers Approach in Protecting NPP Primary and Secondary System from Seismic Loads	9-5
	and Operational Vibration	9-13
9.6	Nomenclature	9-24
9.7	Glossary	9-26
9.8	References	9-29

CHAPTER 10 Czech & Slovakian Codes

Milan	Brumovsky	10-1
10.1	Short History and Introduction	10-1
	SONS Requirements for Lifetime Evaluation	10-1
10.3		
	Reactor Components	10-1
10.4	Verlife Procedure	10-3
10.5	Covers Continuation	10-6
10.6	IAEA Guidelines	10-7
10.7	IAEA Guidelines—Appendix C	10-7
10.8	Conclusion	10-11
10.9	Comments	10-11
10.10	References	10-11
10.11	Structure of NTD ASI	10-11
	Section I—Welding of Components	
	and Piping in WWER Type NPPs	10-11
	Section II-Characteristics of Materials and	
	Welds for Components and	
	Piping in WWER Type NPPS	10-12
	Section III-Evaluation of Strength	
	of Components and Piping in	
	WWER Type NPPS	10-13
	Section IV—Evaluation for Residual Lifetime	
	of Components and Piping in	
	WWER Type NPPS	10-13
	Section V—Material Testing	10-14

CHAPTER 11 Comprehensive Adaptation of the ASME Code at Paks NPP, Hungary

Peter	Trampus and Peter Pal Babics	11-1
11.1	Introduction	11-1
11.2	Motivation of the ASME Code	
	Adaptation in Hungary	11-1
11.3	Main Features of the Former Hungarian	
	ISI System	11-3
11.4	International Experiences	11-4
11.5	Comparative Assessment of the US and	
	Hungarian Legislative/Regulatory Framework	11-6
11.6	Analysis and Evaluation of Individual Documents	11-6
11.7	Construction Review of Selected Components	11-8
11.8	Inspection where the ASME BPVC	
	is Not Applicable	11-8
11.9	Conclusions	11-9
11.10	References	11-9

PART 3: GLOBAL APPLICATIONS OF ASME B&PV CODES: Africa

CHAPTER 12 Codes and Standards Used in the Nuclear Industry in the Republic of South Africa

Malcolm J. Europa, Paul J. Brinkhurst, John Fletcher, Neil Broom, and Chris Stolle12-1		
12.1	Introduction	12-1
12.2	Regulatory Control of Pressurized	
	Equipment Used in the Nuclear Industry	12-1
12.3	Nuclear Code and Standards Usage	
	in Republic of South Africa	12-3
12.4	Future Outlook	12-9
12.5	References	12-9

PART 4: GLOBAL APPLICATIONS OF ASME B&PV CODES: Asia

CHAPTER 13 Recent Development of Codes and Standards of Boiler and Pressure Vessels in Japan

Standards of Boiler and Pressure Vessels in Japan				
Kunio Hasegawa, Toshio Isomura, Yoshinori Kajimura,				
Masa	ki Morishita, and Yuichi Oishi	13-1		
13.1	Introduction	13-1		
13.2	B&PV Codes and Standards System in Japan	13-2		
13.3	B&PV Codes and Standards for Petroleum			
	and Petrochemical Plants	13-4		
13.4	The Japan Society of Mechanical Engineers			
	(JSME) Codes for Power Generation Facility	13-10		
13.5	The Japan Society of Mechanical Engineers			
	(JSME) Codes for Thermal			
	Power Plant Components	13-10		
13.6	The Japan Society of Mechanical Engineers			
	(JSME) Codes for Nuclear Power			
	Planar Components	13-13		
13.7	The Japan Society of Mechanical Engineers			
	(JSME) Code Fusion Powerplant			
	Component Iter	13-30		
13.8		13-31		
	Summary and Conclusion	13-35		
13.10	13.10 References 13-35			

CHAPTER 14 Korean Regulatory System and Codes of Nuclear Boiler and Pressure Vessels

Jong	C. Jo and Howard H. Chung	14-1
14.1	Introduction	14-1
14.2	Nuclear Regulatory Organizations	14-2
14.3	Legislation System	14-3
14.4	Licensing System and Safety Assessment	14-6
14.5	Locations of the Nuclear Power Plants	
	in Korea	14-9
14.6	Introduction to the Notices of the Nuclear	
	Safety and Security Commission Related	
	to Nuclear Power Reactor Boiler and	
	Pressure Vessels in Korea	14-10

14.7	Guidelines for the Application of the Korea Electric Power Industry Codes to the Technical Standards of Reactor Facilities	
	(Notice of the Nuclear Safety and	
	Security Commission No. 2013-08)	14-11
14.8	Industrial Code in Korea: Korea Electric	
	Power Industry Code (KEPIC)	14-14
14.9	Conclusions	14-26
14.10	References	14-26

CHAPTER 15 Development of Nuclear Boiler and Pressure Vessels in Taiwan

Ching-Tien Hung, Yi-Bin Chen, Shin Chang,

and Ting Chow15-1		
15.1	Introduction	15-1
15.2	Role of Regulatory Authority	15-1
15.3	Seismic Design	15-5
15.4	Pressure Boundary Integrity	15-7
15.5	Power Uprate and License Renewal	15-8
15.6	Radioactive Waste Management of NPPs	15-9
15.7	Pressure Vessel Codes	
	of Chinese National Standards (CNS)	15-9
15.8	Acknowledgments	15-10
15.9	References	15-10

. . .

CHAPTER 16 Design of Indian Pressurized Heavy Water Reactors

PART A: DESIGN OF INDIAN PRESSURIZED HEAVY WATER REACTORS

U.C. Muktibodh, K.B. Dixit,		
S.M. Ing	gole, Braham Parkash	16-1
16A.1	Introduction	16-1
16A.2	Indian PHWR	16-1
16A.3	Design of Indian Pressurized Heavy Water	
	Reactor Components	16-7
16A.4	Design Philosophy for Reactor Components	16-13
16A.5	Seismic Qualification, Leak Before Break,	
	ISI, and Containment Design	16-13
16A.6	Organization of Design, Fabrication,	
	Construction, Operation, and ISI	
	of NPPs in India	16-20
16A.7	Seismic Re-Evaluation of Older	
	Generation Plants	16-23
16A.8	Post Fukushima Upgradations	
	for Operating Stations	16-23
16A.9	Summary	16-24
16A.10	Acknowledgments	16-24
16A.11	References	16-24

PART B: NUCLEAR POWER AND GENERATION IV NUCLEAR REACTORS IN INDIA

Harday	al S. Mehta	16-26
16B.1	Introduction	16-26
16B.2	Future Nuclear Cycle in India	16-26

16B.3	International Collaborations and Availability	
	of Materials and Technical Know How	16-28
16B.4	Summary	16-28
16B.5	Acknowledgments	16-28
16B.6	References	16-28

CHAPTER 17 Application of Nuclear and Non-Nuclear Standards in China

Jinquan Yan, Binan Shou, Ruilin Dong,
Xuedong Chen, Yinbiao He, Tong Xu,
Xueyuan Liang, and Jun Cui17-1

17.1	Nuclear Boiler and Pressure Vessel Codes	
	and Standards in China	17-1
17.2	Non-Nuclear Boiler and Pressure Vessel Codes	S
	and Standards in China	17-9
17.3	References, Section 17.1	17-18
17.4	References, Section 17.2	17-18

PART 5: GLOBAL APPLICATIONS OF ASME B&PV CODES: Special Topics

CHAPTER 18 Global Harmonization of Nuclear Construction Codes and Standards

Richard W. Swayne		
	Introduction	18-1
18.2	Evolution of Codes and Standards	
	Development Globally	18-1
18.3	Multinational Design Evaluation	
	Program (MDEP)	18-2
18.4	Code Comparison Project	18-2
18.5	Technical Harmonization/Convergence	18-2
18.6	Conclusions	18-3
18.7	References	18-3
	Appendix 18.1 Perspectives on Achieving	
	Harmonization of Codes and Standards	18-4

CHAPTER 19 Global Harmonization of Flaw Modeling/Characterization

Kunio Hasegawa, Bostjan Bezensek, and Douglas A. Scarth19-1				
19.1	Introduction	19-1		
19.2	Characterization of a Single Flaw	19-1		
19.3	Characterization of Multiple Flaws	19-6		
19.4	Grouping of Multiple Laminar Flaws	19-9		
19.5	Summary and Conclusions	19-11		
19.6	References	19-11		

CHAPTER 20 A Case Study of Dry Storage System for Used Nuclear Fuel

Jayant Bondre and William Bracey20-1				
20.1	Background	20-1		
20.2	Introduction to AREVA TN	20-2		
20.3	Licensing Regulatory Risk Management	20-2		
20.4	Benefits of the NUHOMS [®] System	20-3		
20.5	Advantages of Above-Ground			
	NUHOMS [®] System	20-6		
20.6	Advanced High-Capacity High-Heat Load			
	NUHOMS [®] EOS System	20-11		
20.7	First Canistered High Burnup			
	Licensed Transportation Cask: MP197HB	20-12		
20.8	Conclusion	20-14		
20.9	References	20-15		

CHAPER 21 Utilities' Perspective of Spent Fuel Storage

PART 21A: ENTERGY PERSPECTIVE ON SPENT FUEL STORAGE

Steve Brown and Suzzanne Leblang......21-1

21A.1	Introduction	21-1
21A.2	Spent Fuel Pools	21-1
21A.3	Dry Cask Storage	21-4
21A.4	Reference	21-7
21A.5	Useful Material for Additional Reading	21-8

PART 21B: PACIFIC GAS AND ELECTRIC SPENT FUEL STORAGE

Lawrence Pulley21-9			
21B.2 21B.3 21B.4	Introduction Humboldt Bay Power Plant Diablo Canyon Power Plant Role of ISFSI in Spent Fuel Storage of PG&E Reference	21-9 21-9 21-9 21-9 21-10	

PART 21C: SPENT FUEL STORAGE FOR CANDU® POWER REACTORS

Todd Daniels			
21C.1	Overview of the CANDU [®] Spent Fuel Storage System	21-11	
21C.2	CANDU [®] Fuel Description	21-11	
21C.3	Irradiated Fuel Bays	21-11	
21C.4	Dry Storage Containers	21-12	
21C.5	Deep Geologic Repository	21-12	
21C.6	Reference	21-12	
IndexI-1			