Table of Contents

	ies Editors' Preface	iii
Gue	est Editor Preface	v
Abs	stract	xi
1.	Structural performance of thermo-active foundations	1
	1.1 Introduction	1
	1.2 Thermo-elastic soil-structure interaction	2
	1.3 Design criteria	8
	1.4 Thermo-mechanical load transfer analysis	11
	1.4.1 Assumptions and basic aspects of the model	11
	1.4.2 Load-transfer curves	14
	1.4.3 Mechanical load transfer analysis	16
	1.4.4 Thermo-mechanical T-z analyses	18
	1.4.5 Model evaluation: impact of temperature changes	23
	1.4.6 Model evaluation: impact of boundary conditions	25
	1.4.7 Model evaluation: head restraint effects	27
	1.4.8 Results from thermo-active foundations	28
	1.5 Final comments	38
	1.6 Acknowledgments	39
	1.7 References	39
2.	Thermal analysis of thermoactive foundations	45
	2.1 Introduction	45
	2.2 Thermal modeling of TAFs	49
	2.2.1 Description of TAF thermal modeling	49
	2.2.2 Experimental validation	56
	2.2.3 Sensitivity analysis	61
	2.2.4 Impact of thermal piles on soil temperature distribution	67
	2.3 Building foundation heat transfer	70
	2.4 Thermal response of TAFs	76
	2.5 Energy analysis of buildings with TAF systems	80
	2.5.1 Application of TAFs for office buildings	80
	2.5.2 Application of TAFs to residential buildings	88
	2.6 Summary and conclusions	91
	2.7 References	92
3.	Full scale geothermal energy pile studies at Monash University,	
	Melbourne, Australia	95
	3.1 Introduction	95
	3.2 Site ground conditions	96
	3.3 Instrumentation of full-scale geothermal energy piles	97
	3.3.1 Single geothermal energy pile instrumentation	97
	3.3.2 Instrumentation of group of geothermal energy piles	100
	3.4 Heating test for single pile case	102
	3.5 Mechanical tests	107

x Thermoactive Foundations for Sustainable Buildings

3.6 Dual pile system	110
3.6.1 Concrete curing temperature	110
3.6.2 Strains during concrete curing	112
3.7 Conclusions	115
3.8 Acknowledgments	116
3.9 References	116
About the authors	119