

## MC137

## Creating and Implementing Effective Inspection Plans for Pressure Equipment and High Energy Piping Systems using ASME PCC-3

## Day 1

- Background and Development of ASME PCC-3, Inspection Planning Using Risk-Based Methods
  - Overview of PCC-3
  - Discussion of Risk
  - Probability of Failure
  - Consequence of Failure
  - Key References
- Introduction to Risk-Based Inspection
  - Inspection Optimization
  - Levels of Analysis
- Planning the Risk Analysis
  - Identifying Objectives
  - Initial Screening
  - Selecting the Risk Analysis Level
  - Estimating Time and Resources
- Data and Information Collection
  - Typical Data Needs
  - Data Quality
- Damage Mechanisms and Failure Modes
  - Identifying Damage Mechanisms
  - Determining the Failure Mode
- Determining Probability of Failure
  - Units of Measure
  - Baseline Probability
  - Effects of In-Service Damage
  - Determining Failure Modes
  - Calculating Damage Progression Rate
- Determining Consequence of Failure
  - Units of Measure
  - Types of Consequences
  - Analysis of the Consequence of Failure
- Risk Determination, Analysis, and Management



- Addressing Failure Modes with Multiple Consequence Scenarios
- Risk Calculation
- Risk Communication
- Establishing Acceptable Risk Thresholds
- Risk Management with Inspection Activities
  - Identifying Opportunities for Risk Reduction
  - Establishing an Inspection Strategy
  - Using Inspection to Manage Risk
- Other Risk Mitigation Activities
- Re-Analysis
  - When to Conduct a Re-Analysis
- Documentation and Record Keeping
- Case Study 1 Equipment Assessment; Multi-Vessel Process
- Case Study 2 Component Assessment; High Energy Piping System

2