NON DESTRUCTIVE TESTING AND EVALUATION METHODS FOR COMPOSITE HYDROGEN TANKS
Date of Issuance: November 1, 2008

This report was prepared as an account of work sponsored by NCMS and the ASME Standards Technology, LLC (ASME ST-LLC).

Neither ASME, ASME ST-LLC, nor others involved in the preparation or review of this report, nor any of their respective employees, members, or persons acting on their behalf, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights.

Reference in this report to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation or favoring by ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof. The views and opinions of the authors, contributors and reviewers of the report expressed in this report do not necessarily reflect those of ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof.

ASME ST-LLC does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a publication against liability for infringement of any applicable Letters Patent, nor assumes any such liability. Users of a publication are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this publication.

ASME is the registered trademark of the American Society of Mechanical Engineers.
TABLE OF CONTENTS

Foreword ... ix
Abstract .. x

1 Test Methods ... 1
 1.1 Summary .. 1
 1.2 Background on the NDE Techniques ... 1
 1.2.1 Modal Acoustic Emission ... 1
 1.2.2 Ultrasonic .. 2
 1.3 Lincoln Composites Pressure Vessels .. 9
 1.4 TransCanada/FPC Pressure Vessels ... 10

2 Ultrasonic Testing .. 12

3 Modal Acoustic Emission Testing – Lincoln Tanks .. 14
 3.1 Test Description .. 14
 3.1.1 Test Concepts .. 14
 3.1.2 Tank Description .. 14
 3.1.3 Test Setup .. 15
 3.2 Pre-damage Proof Testing ... 17
 3.3 Drilled Hole Testing .. 19
 3.4 Cut Fibers Testing ... 24
 3.5 Impact Testing ... 27
 3.6 Vessel Damage Test Conclusions ... 31

4 Modal Acoustic Emission Testing – TransCanada Tanks ... 32
 4.1 Cycle Tests - Vessel G107100007 ... 33
 4.1.1 Summary .. 33
 4.1.2 Modal AE Equipment Settings ... 33
 4.1.3 Sensor Layout .. 34
 4.1.4 Flow Noise Waveforms ... 34
 4.1.5 Results and Discussion .. 35
 4.1.6 Graph Legend ... 36
 4.1.7 Autofrettage Test .. 36
 4.1.8 Cycles 1 to 2631 .. 36
 4.1.9 Cycles 2638 to 2662 .. 38
 4.1.10 Cycles 2670 to 5358 .. 39
 4.1.11 Cycles 5358 to 7089 .. 40
 4.1.12 Last 5000 cycles, up to 12,052 .. 40
 4.1.13 Conclusions ... 42

 4.2 Autofrettage Tests - Vessels G1074500004, G1074500005, G1074500006 and G1074500010 43
 4.2.1 Summary .. 43
 4.2.2 Modal AE Equipment Settings ... 44
 4.2.3 Sensor Layout and Coupling Check .. 44
 4.2.4 G1074500004 Autofrettage Test ... 45
 4.2.5 G1074500004 AE and Volumetric Test .. 45
 4.2.6 G1074500005 Autofrettage Test ... 46
LIST OF TABLES
Table 1 - TransCanada Tank Testing History .. 32
Table 2 - G107100007 Cycle Testing .. 33
Table 3 - FM-1 System Settings ... 34
Table 4 - Autofrettage Testing ... 44
Table 5 - FM-1 System Settings ... 44
Table 6 - FM-1 System Settings ... 51
Table 7 - Hydrostatic Test Requirements ... 78

LIST OF FIGURES
Figure 1 - Computer and Amplifier/Filter Stack for Recording Modal AE Sounds............................... 2
Figure 2 - F-Scan X-Y Scanning Bridge .. 3
Figure 3 - Close-up of the Scanning Head ... 4
Figure 4 - Software Screen Showing the Various Displays During a Stiffness Scan................................. 5
Figure 5 - Expanded View of the Dispersion Curve Shown in Figure 4 .. 6
Figure 6 - Laminate Properties (A, B and D Matrices) .. 6
Figure 7 - Composite Plate Properties Can Be Stored for Later Recall ... 7
Figure 8 - Time of Flight Plot ... 8
Figure 9 - Transmit and Receive Channels ... 9
Figure 10 - Lincoln Composite Pressure Vessel Setup for Pressure Test with MAE 10
Figure 11 - Transcanada/FPC 40-ft. Vessel .. 11
Figure 12 - GTM at FPC Shows Effects of .50 Caliber Machine Gun Fire ... 12
Figure 13 - Burst Test of the Fire Damaged GTM .. 13
Figure 14 - Burst Test of a 10-ft. GTM ... 13
Figure 15 - 613-0XX H2 Pressure Vessel .. 14
Figure 16 - 613-0XX Approximate Dimensions .. 15
Figure 17 - 613-0XX Sensor Circumferential Distance .. 16
Figure 18 - 613-0XX Ready for Proof Test ... 16
Figure 19 - 613-001 Sensor Locations .. 17
Figure 20 - 613-001 Before Drilled Holes ... 18
Figure 21 - 613-003 Proof Before Impact ... 18
Figure 22 - 613-018 Proof Before Cut Damage .. 19
Figure 23 - 613-001 Sensor Locations .. 20
Figure 24 - 613-001 Sensor Locations .. 20
Figure 25 - 613-001 Drilled Holes ... 21
Figure 96 - (12, 12) Lead Break Position, Directional Rays ...72
Figure 97 - (12, 12) Lead Break Position, Time Shifted Waveforms ..72
Figure 98 - (6, 12) Lead Break Position, Directional Rays ..73
Figure 99 - (6, 12) Lead Break Position, Time Shifted Waveforms ...73
Figure 100 - (12, 24) Lead Break Position, Directional Rays ...74
Figure 101 - (12, 24) Lead Break Position, Time Shifted Waveforms ...74
Figure 102 – Application of Phased Arrays ...75
Figure 103 - Path 1 in Long Seam Weld for Fatigue Data. Path Starts at the Vessel ID81
Figure 104 - Path 2 in Long Seam Weld for Fatigue Data. Path Starts at the Vessel OD82
Figure 105 - Path 3 in Long Seam Weld for Fatigue Data. Path Starts at the Vessel ID82
Figure 106 - Stress Path Across Offset Shell to Head Weld ...83
Figure 107 - 613-003 12.5 ksi Proof Test after 6-ft. Drop ..88
Figure 108 - 613-003 P to 12.5 ksi after 6-ft. Drop ..89
Figure 109 - 613-003 P to 12.5 ksi after 6-ft. Drop ..89
Figure 110 - 613-003 P to 12.5 ksi after 6-ft. Drop ...90
Figure 111 - 613-003 P To 12.5 ksi after 6-ft. Drop ..90
Figure 112 - 613-003 P To 12.5 ksi after 6-ft. Drop ..91
Figure 113 - 613-003 P= 12.5 ksi after 6-ft. drop ...92
Figure 114 - 613-003 P= 12.5 ksi after 6-ft. drop ...92
Figure 115 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...93
Figure 116 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...94
Figure 117 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...95
Figure 118 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...95
Figure 119 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...96
Figure 120 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...97
Figure 121 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...98
Figure 122 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...99
Figure 123 - 613-003 High Gain Test to P= 12.5 ksi after 6-ft. drop ...100
FOREWORD

The report is the result of a collaborative research project sponsored by the National Center for Manufacturing Sciences, Inc. (NCMS) and performed under Collaborative Agreement Number 200589-130163. Project participants included ASME Standards Technology LLC, Digital Wave Corporation, Lincoln Composites and TransCanada CNG Tech. LTD. The project participants provided matching contributions of labor and expenses to the project.

It is anticipated that automotive fuel tanks with a capacity of 10,000 psi compressed hydrogen will be required in order to commercialize fuel cell vehicles (FCVs). The infrastructure supporting refueling of these vehicles will require storage, transportation and portable pressure vessels with operating pressures up to 15,000 psi compressed hydrogen. Due to cost and weight constraints, the use of composite pressure vessels will be a critical new technology to enable the development of the FCV fuel tanks and the supporting hydrogen infrastructure. New code rules will be required to enable commercialization of the technology and achievement of the DOE hydrogen program goals.

Destructive burst pressure tests are conducted by composite pressure vessel manufacturers to verify the integrity of their products and to meet existing rules. These destructive tests are costly, require significant time to perform and must be performed under strict safety guidelines by trained personnel. Destructive testing increases overall manufacturing cost in the form of parts, labor, equipment–hydraulic volume tanks, safety equipment (burst chambers), employee training, insurance premiums, designated facilities, etc. Additionally, destructive testing also increases lead times, further making manufacturers less competitive. These tests are often conducted more than once as test results from a single pressure burst test are not considered sufficient for a single design or lot. Although this may still be cost effective for manufacture of orders for multiple duplicate composite pressure vessels, this may be cost prohibitive for single or custom pressure vessel orders. Non-destructive testing evaluation methods can substantially reduce manufacturing cost by eliminating extensive and costly testing periods.

The non-destructive evaluation methods, Acoustic Emission (AE) and Modal AE, proposed for hydrogen applications are transferable to other industries (petrochemical, aerospace, military, medical and energy–LPG and natural gas) and have been used in leak detection applications for years with media such as petroleum, helium, water, air, oxygen, nitrogen and other gases.

Established in 1880, the American Society of Mechanical Engineers (ASME) is a professional not-for-profit organization with more than 127,000 members promoting the art, science and practice of mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and standards that enhance public safety, and provides lifelong learning and technical exchange opportunities benefiting the engineering and technology community. Visit www.asme.org for more information.

The ASME Standards Technology, LLC (ASME ST-LLC) is a not-for-profit Limited Liability Company, with ASME as the sole member, formed in 2004 to carry out work related to newly commercialized technology. The ASME ST-LLC mission includes meeting the needs of industry and government by providing new standards-related products and services, which advance the application of emerging and newly commercialized science and technology and providing the research and technology development needed to establish and maintain the technical relevance of codes and standards. Visit www.stllc.asme.org for more information.
ABSTRACT

This report includes a study of various nondestructive evaluation (NDE) techniques for composite overwrapped pressure vessels intended for gaseous hydrogen infrastructure applications. The majority of the study focuses on Model Acoustic Emissions (MAE) techniques. Testing was performed on various composite tank designs including small high pressure plastic-lined fully-wrapped composite pressure vessels designed for portable, stationary or vehicular storage and large steel-lined hoop-wrapped pressure vessels designed for bulk transport and stationary storage. MAE testing was performed by Digital Wave Corp. on vessels provided by Lincoln Composites and TransCanada.

MAE testing of Lincoln Composites plastic-lined fully-wrapped 10,000 psi composite pressure vessels was performed at the Lincoln facilities in April 2007. Tank damage was simulated through drilled holes, membrane cuts and a drop test, and subsequent proof and burst testing was performed while monitoring with MAE techniques. The manufacturing consistency was confirmed by MAE. Generally, it was observed that the vessels failed at damage sites. Drilled holes all the way through the composite resulted in lowest burst pressure, followed by impact from 6-ft. drop onto concrete, and finally the cut fibers. MAE picked up the newly introduced damage very well on first pressurization after damage occurred. Emission did not completely stabilize, indicating that the damage did continue to grow during the pressure holds. At the higher sensitivity setting, MAE Frictional Emission (FRAE) was picked up on every cycle after damage. Location of damage was very clear acoustically using MAE techniques.

MAE testing of six TransCanada large steel-lined hoop-wrapped composite pressure vessels was performed in October 2007. The test program included cyclic testing, pressure/autofrettage and burst testing while monitoring using MAE techniques. During cycle testing crack growth was detected in the metallic head to shell welds at both ends of the vessel. The number of cycles sustained before fatigue failure due to this cracking exceeded the required 10,000 cycles. This was determined from the acoustical signal produced by a leak source. During the pressure (autofrettage) tests, the cumulative events versus time curves showed a characteristic “roll over” during pressure load holds in the AE test in all cases. There were few or no events during the load holds and very few events during the AE test. This is consistent with fracture mechanics reasoning since the AE test pressure is so much lower than the autofrettage pressure. It was observed that autofrettage cycles at 1.5 x operating pressure instrumented for AE detection would bound an AE cycle at 1.1 x operating pressure. This conclusion is in agreement with previous experience on various other pressure vessels.

A study and laboratory testing of MAE sensor arrays constructed of piezoelectric material, polyvinylidene film (PVDF), was performed by Digital Wave Corp. in February 2008. This study looked at two ways to enhance the sensitivity of the PVDF film transducers, 1) sensor stacking and analog summation of the sensor outputs, and 2) digital summation of the sensor outputs. It was observed that stacked sensors increased sensitivity of detection, there was no phase distortion due to stacking and reducing sensor size can reduce aperture affects and increase bandwidth. A phased array configuration for modal acoustic emission (MAE) can determine direction of source and possibly distance. Phasing of signals for source location is possible and aids in mode identification and source location, which is very sensitive to variations in arrival time differences. Sensor placement is also extremely important, and the sensitivity to array geometry must be studied.

This report also includes additional discussion of other relevant NDE and analysis techniques including a study of composite tank hydrostatic test requirements, a finite element analysis (FEA) and fracture mechanics analysis on composite reinforced pressure vessels predicting failures observed during testing and indicated using AE techniques, and a discussion of photon induced positron annihilation (PIPA) which is a potential NDE process that can assess material damage at the near-molecular level.