Table of Contents

Acknowledgments			vii	
Preface				
Ser	Series Editors' Preface			
Nomenclature				
1.	Pipe structures and piping analysis			
	1.1	Introduction	1	
	1.2	Structural analysis of pipe structures	4	
		1.2.1 Traditional piping analysis software	6	
		1.2.2 Advanced piping analysis software	7	
	1.3	Structural design evaluation – Linear and nonlinear alternatives	8	
		1.3.1 Linear design evaluation	8	
		1.3.2 Nonlinear design evaluation	10	
	1.4	Concluding remarks	12	
2.	No	nlinear design evaluation alternatives – Class 1 piping	15	
	2.1	Introduction	15	
	2.2	Loads and load combinations	16	
	2.3	Time-history dynamic loads	17	
	2.4	Design condition	19	
	2.5	Level A loads	20	
		2.5.1 Fatigue evaluation	21	
		2.5.2 Thermal stress ratchet evaluation	25	
		2.5.3 Nonlinear evaluation alternatives	25	
	2.6	Level B loads	27	
		2.6.1 Load sets including non-reversing dynamic loads	28	
		2.6.2 Load sets including reversing dynamic loads	29	
		2.6.3 Fatigue evaluation	29	
	2.7	Level D loads	30	
		2.7.1 Load sets including non-reversing dynamic loads	30	
	_	2.7.2 Load sets including reversing dynamic loads	33	
	2.8	Level C loads	36	
		2.8.1 Load sets including non-reversing dynamic loads	37	
	•	2.8.2 Load sets including reversing dynamic loads	39	
-	2.9	Concluding remarks	40	
3.	No	nlinear design evaluation alternatives – Class 2 and Class 3 piping	41	
	3.1	Introduction	41	
	3.2	Linear design evaluation	41	
		3.2.1 Design Condition	42	
		3.2.2 Level A and B loads	42	
		3.2.3 Level D loads	43	
		3.2.4 Level C loads	45	

vi Nuclear Power Piping

	3.3	Nonlinear design evaluation	46	
		3.3.1 An argued alternative	46	
		3.3.2 A Class upgrade alternative	47	
		3.3.3 More on the Class upgrade alternative	48	
	3.4	Concluding remarks	48	
4.	No	nlinear finite element procedures for piping analysis	51	
	4.1	Introduction	51	
	4.2	Finite element procedures for collapse load analysis	52	
		4.2.1 General notes	53	
		4.2.2 The Plastic Analysis procedure	54	
		4.2.3 The Limit Analysis procedure	57	
	4.3	Finite element procedures for nonlinear transient analysis	58	
	4.4	More on time-history dynamic loads and strain-based criteria	60	
	4.5	Concluding remarks	62	
5.	Fat	igue verification and nonlinear alternatives	65	
	5.1	Introduction	65	
	5.2	The requirements and procedures for fatigue verification	66	
	5.3	The simplified elastic-plastic analysis alternative	67	
	5.4	More on the simplified elastic-plastic analysis alternative	70	
	5.5	Other alternatives	72	
		5.5.1 General notes	72	
		5.5.2 Thermal stress ratchet verification	73	
		5.5.3 Other fatigue evaluation alternatives	74	
		5.5.4 Nonlinear finite element analysis	77	
	5.6	Concluding remarks	78	
6.	Pip	ing supports under combined stresses and nonlinear effects in		
	des	ign evaluation	79	
	6.1	Introduction	79	
	6.2	Design evaluation of Linear Type supports under combined stresses	80	
		6.2.1 Axial compression plus bending	80	
		6.2.2 Axial tension plus bending	82	
	6.3	The allowable stresses	82	
		6.3.1 Design Condition and Level A	83	
		6.3.2 Levels B and C	84	
		6.3.3 Level D	85	
	6.4	The allowable axial compressive stress (F_a) for Level D	87	
		6.4.1 Alternative I	89	
		6.4.2 Alternative 2	90	
	6.5	A verification example	91	
D (. 6.6	Concluding remarks	93	
Ket	Keterences			
Ind	Index			
Ab	About the authors			