

PD268 Fracture Mechanics

Day One

- Introduction Lecture, video, and discussion
 - Video: "The Last of the Liberties", which documents the brittle fracture of the Liberty Ships in WW II and the resulting birth of fracture mechanics as an engineering discipline.
 - Fracture mechanics versus strength-of-materials approach to design against fracture
 - Fracture mechanics versus S-N curve approach to design against fatigue failure
- Linear elastic fracture mechanics (LEFM) Lecture, discussion, and examples
 - The Griffith model for cracks
 - The energy release rate parameter
 - The stress intensity factor (K)
 - Crack tip similitude
 - Crack tip plasticity
 - K_{Ic} testing
- Elastic-plastic fracture mechanics Lecture, discussion, and examples
 - Crack tip opening displacement (CTOD) parameter
 - J-integral parameter
 - JIc and J resistance curve testing
 - Similitude under elastic-plastic conditions

Day Two

- Introduction to fatigue crack growth Lecture, discussion, and examples
 Similitude in fatigue
 - Empirical crack growth equations
 - Life prediction by numerical integration
 - Using crack growth analysis to define inspection intervals
- Advanced topics in fatigue Lecture, discussion, and examples
 - Crack closure
 - Linear damage model for variable-amplitude loading
 - Retardation and load interaction
 - Growth of small cracks
- Environmental cracking Lecture, discussion, and examples
 - Basic principles and terminology in corrosion engineering
 - Stress corrosion cracking (SCC)
 - Hydrogen embrittlement
 - Corrosion fatigue
 - Laboratory testing

- LEFM Applications Lecture, discussion, and examples
 - The principle of superposition
 - Computing stress intensity factor for polynomial stress gradients
 - The weight function method for arbitrary stress gradients

Day Three

- Elastic-plastic applications Lecture, discussion, and examples
 - The EPRI J estimation handbook
 - Ductile instability
 - The failure assessment diagram (FAD) method
 - Incorporating weld residual stresses into the FAD method
 - Monte Carlo probabilistic analysis
- Finite element analysis of components with cracks Lecture, discussion, and examples
 - Incorporating a crack into a finite element mesh
 - Comparison of methods to compute KI
 - Modeling crack growth with finite element analysis
- Fracture mechanisms in metals & alloys Lecture, discussion, and examples
 - Ductile fracture (microvoid coalescence)
 - Cleavage fracture
 - The ductile-brittle transition region
 - Intergranular fracture
- General discussion and course wrap-up