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FOREWORD 
This document is the result of work resulting from Cooperative Agreement DE-FC07-05ID14712 
between the U.S. Department of Energy (DOE) and ASME Standards Technology, LLC (ASME ST-
LLC) for the Generation IV (Gen IV) Reactor Materials Project.  The objective of the project is to 
provide technical information necessary to update and expand appropriate ASME materials, 
construction and design codes for application in future Gen IV nuclear reactor systems that operate at 
elevated temperatures.  The scope of work is divided into specific areas that are tied to the Generation 
IV Reactors Integrated Materials Technology Program Plan.  This report is the result of work 
performed under Task 10 titled “Update and Improve Subsection NH – Alternative Simplified Creep-
Fatigue Design Methods.” 

ASME ST-LLC has introduced the results of the project into the ASME volunteer standards 
committees developing new code rules for Generation IV nuclear reactors.  The project deliverables 
are expected to become vital references for the committees and serve as important technical bases for 
new rules.  These new rules will be developed under ASME’s voluntary consensus process, which 
requires balance of interest, openness, consensus and due process.  Through the course of the project, 
ASME ST-LLC has involved key stakeholders from industry and government to help ensure that the 
technical direction of the research supports the anticipated codes and standards needs.  This directed 
approach and early stakeholder involvement is expected to result in consensus building that will 
ultimately expedite the standards development process as well as commercialization of the 
technology. 

ASME has been involved in nuclear codes and standards since 1956.  The Society created Section III 
of the Boiler and Pressure Vessel Code, which addresses nuclear reactor technology, in 1963.  ASME 
Standards promote safety, reliability and component interchangeability in mechanical systems. 

Established in 1880, the American Society of Mechanical Engineers (ASME) is a professional not-
for-profit organization with more than 127,000 members promoting the art, science and practice of 
mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and 
standards that enhance public safety, and provides lifelong learning and technical exchange 
opportunities benefiting the engineering and technology community. Visit www.asme.org for more 
information. 

The ASME Standards Technology, LLC (ASME ST-LLC) is a not-for-profit Limited Liability 
Company, with ASME as the sole member, formed in 2004 to carry out work related to newly 
commercialized technology. The ASME ST-LLC mission includes meeting the needs of industry and 
government by providing new standards-related products and services, which advance the application 
of emerging and newly commercialized science and technology and providing the research and 
technology development needed to establish and maintain the technical relevance of codes and 
standards. Visit www.stllc.asme.org for more information.  

http://www.asme.org/
http://www.stllc.asme.org/
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EXECUTIVE SUMMARY 
Five newly proposed promising creep-fatigue evaluation methods were investigated.  Those are 1) 
modified ductility exhaustion method, 2) strain range separation method, 3) approach for pressure 
vessel application, 4) hybrid method of time fraction and ductility exhaustion, and 5) simplified 
model test approach. 

The outlines of those methods are presented first, and predictability of experimental results of these 
methods is demonstrated using the creep-fatigue data collected in STP-NU-013 [2] and STP-NU-018 
[3].  All the methods (except the simplified model test approach which is not ready for application) 
predicted experimental results fairly accurately.  On the other hand, predicted creep-fatigue life in 
long-term regions showed considerable differences among the methodologies.  These differences 
come from the concepts each method is based on. 

All the new methods investigated in this report have advantages over the currently employed time 
fraction rule and offer technical insights that should be thought much of in the improvement of creep-
fatigue evaluation procedures. 

The main points of the modified ductility exhaustion method, the strain range separation method, the 
approach for pressure vessel application and the hybrid method can be reflected in the improvement 
of the current time fraction rule.  The simplified model test approach would offer a whole new 
advantage including robustness and simplicity which are definitely attractive but this approach is yet 
to be validated for implementation at this point. 

Therefore, this report recommends the following two steps as a course of improvement of NH based 
on newly proposed creep-fatigue evaluation methodologies.  The first step is to modify the current 
approach by incorporating the partial advantages the new methods offer, and the second step is to 
replace the current method by the simplified model test approach when it has become technically 
mature enough. 

The recommendations are basically in line with the work scope of the Task Force on Creep-Fatigue of 
the Subgroup on Elevated Temperature Design of the Standards Committee of the ASME Boiler and 
Pressure Vessel Committee Section III. 


