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• Part 1: Safety-critical systems, system states, faults, errors, failures.

• Part 2: Anomalies and anomaly detection methods.

• Part 3: Example of a DL-based anomaly detector (Kraken).

• Part 4: Challenges and solutions.
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Faults, errors, failures



Faults, errors, failures
Examples of safety-critical systems
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Faults, errors, failures
Networked heterogenous components
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Faults, errors, failures
Examples of internal faults
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Faults, errors, failures
Examples of internal faults
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Faults, errors, failures
Examples of external faults
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(e) Environmental conditions

(d) Hacker attacks

https://innovate.ieee.org/innovation-spotlight/vehicle-detection/



Faults, errors, failures
System states
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Faults, errors, failures
System states
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Faults, errors, failures
System errors
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Fault – a defect in the system.
Fault activation results in error occurrence.  
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Error – incorrect internal system state.
System is still functioning, possibly in degraded mode.
Error propagation – one error leads to another error.C

N

A

S

S

N

N

S

C

S

A

Sensor faults:
Noise, drift, 
freeze, offset

Network faults:
Packet loss, 
delay, jitter.

Computing 
HW faults:
Bit-flip,
stuck-at

Data errors

Timing  
errors

Failure:
e.g. hazardous 
actuator command



Operation time
N

om
inal

Failure
Error

Faults, errors, failures
System failures

University of Stuttgart 14

An error can cause a failure.
Failure – incorrect delivered service, externally visible 

deviation from system specification.C
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Error detection
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Error detection, failure prevention,
mitigation and recovery.
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Anomalies



Anomalies
What is an anomaly?
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• An anomaly is an observation or a sequence of observations which deviates remarkably 
from the general distribution of data. 

• The set of the anomalies form a very small part of the dataset.



Anomalies
Data types
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• Time series is a series of data points indexed 
in time order. 

• Temporal data include time-series, but also 
data with timestamps of unequal interval.

• Univariate data takes only one dimension,  
e.g., single sensor readings.

• Multivariate data contains multiple dimensions, 
e.g., images or time-series of several sensors.

• Labelled dataset: an annotation exists for each 
element, which determines if it is a normal or 
anomalous.

Example of temporal (time-series), 
multivariate, laballed data:



Anomalies
Anomaly classification
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Three different types of anomalies exist.

• Point anomalies: If a point deviates 
significantly from the rest of the data.

• Collective anomalies: Individual points 
are not anomalous, but a sequence of 
points are labelled as an anomaly.

• Contextual anomalies: Some points 
can be normal in a certain context, 
while detected as anomaly in another 
context.

https://arxiv.org/abs/2204.01637

Point anomaly

Contextual anomaly
Collective anomaly



Anomalies
Classification of detection methods
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Anomalies
Classification of detection methods
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https://commons.wikimedia.org/wiki/File:DBSCAN-Gaussian-data.svg
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Classification of detection methods
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Anomalies
Approaches to DL-based anomaly detection
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1) Classification (MLP, CNN):

• Supervised learning, good performance.

• Requires sufficient labeled erroneous instances.

2) Prediction (LSTM):

• Unsupervised learning, labels are not required.

• On-line localization, and mitigation.

3) Reconstruction (AE):

• Based on encoder-decoder architecture.

• Not so efficient.
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Anomalies
Perfromance of detection methods
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Paper Year Conclusion

Anomaly Detection in Univariate Time-series: A 
Survey on the State-of-the-Art

2020 - DL are flawed (statistical methods 
are better than ML and DL)

Current time series anomaly detection 
benchmarks are flawed and are creating the 
illusion of progress.

2021 - DL are flawed (95% published results 
can‘t be trusted, AD can be solved 
good enough with older methods)

An Evaluation of Anomaly Detection and 
Diagnosis in Multivariate Time Series

2021 - UAE is best (fancy DNN design might 
not work as they promised, trivial NN 
might be better than them)

Do Deep Neural Networks Contribute to 
Multivariate Time Series Anomaly Detection?

2022 + No fit for all solution (positive
evidence that DL do prove real 
advantage in some circumstances)

Anomaly Detection in Time Series: A 
Comprehensive Evaluation

2022 + No fit to all solution (there is no clear 
winner, no one-size-fits-all solution)



Anomalies
Perfromance of detection methods
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Expert knowledge

Statistical approaches

Machine learning

Deep learning

Expert
knowledge

Machine learning

Deep learning

Statistical 
methods

Unknown 
unknowns

Known 
unknowns

Known 
knowns

Deep Learning: e.g. LSTM, Transformer, Autoencoder.

Machine Learning: K-Means, DBSCAN, Isolation Forest.

Statistical Approaches: ARIMA-Model, SES/DES/TES.

Expert knowledge: e.g. rules, range-check.

https://blog.tensorflow.org/2018/10/industrial-ai-bhges-physics-based.html
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Kraken



Kraken
Deep-learning based anomaly detector
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Kraken
Deep-learning based anomaly detector
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1) Muti-Layer Perceptron (MLP)

• Low performance for time series.

2) Recurrent Neural Network (RNN) 

• Has memory to process sequences of inputs.

• Can learn temporal dynamic behavior.

• Fail to capture the context as time steps increase 
(vanishing gradient problem).

3) Long Short Term Memory (LSTM)

• Designed to avoid the vanishing gradient problem.
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Kraken
Deep-learning based anomaly detector

University of Stuttgart 29

Workflow



Kraken
Deep-learning based anomaly detector
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Workflow



Kraken
Deep-learning based anomaly detector
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Stacked LSTM Architecture:

• Layers: two consecutive hidden LSTM layers fully connected (80 units) 

• Look-back: 50 steps. 

• Look-ahead: 1 steps. 

• Dropout: 0.3

Training-parameters:

• Batch size: 70

• Optimizer: Adam 

• Epochs: 35 epochs with early stopping. 1 2 . . . . . . . . . . 50

feed forward layer

. . .51 60

LSTM layer

LSTM layer



Kraken
Deep-learning based anomaly detector
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Workflow



Kraken
Deep-learning based anomaly detector
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Prediction:

• The LSTM network predicts the next value (lookahead q = 1) 

• based on the previous 50 time steps (lookback p = 50).

p=50

va
lu

e

time



Kraken
Deep-learning based anomaly detector
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Workflow

Method1: Gaussian distribution 
based detection

Method2: dynamic threshold based 
detection



Kraken
Deep-learning based anomaly detector
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Gaussian distribution based threshold Dynamic threshold

• better ! • better !



Kraken
Deep-learning based anomaly detector
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Workflow



Kraken
Deep-learning based anomaly detector
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Evaluation

https://en.wikipedia.org/wiki/F-score, TadGAN: Time Series Anomaly Detection using GAN

F1: recall and precision equally important
F2: recall twice as important as precision
F0.5: recall half as important as the precision



Kraken
Other use cases
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Kraken
Other use cases
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Kraken
Time Series Anomaly Detection for Simulink
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“Tool Paper: Time Series Anomaly Detection Platform 
for MATLAB Simulink”, Accepted to IMBSA 2022

Open source: 
https://github.com/mbsa-tud/tsad_platform

Features:

• Multiple DNN architectures
• Customizable hyper-parameters
• Several detection approaches
• Several evaluation methods
• Multiple fault types
• Multiple fault injection methods



Part 4

Challenges



Challenges
How to select a suitable anomaly detector?
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Context-aware anomaly detector:

• Search for optimal detection approach, deep 
learning architecture, hyperparameters;

• Combination (Ensemble) of several detectors;

• Dynamic switch of the detectors.
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Challenges
How to select a suitable anomaly detector?
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Context-aware anomaly detector:
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Challenges
How to select a suitable access points?
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Context-aware anomaly detector:

• System-level control flow, data flow, and 
error propagation analysis

• Dynamic switch according to the attention 
mechanism
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UnderRepair

FailureBatteryLow
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Generator (Data flow commands)
gState=OK -> 
      0.97:(gPower'=HAS_POWER)&(gState'=OK) + 
      0.02:(gPower'=NO_POWER)&(gState'=OK) +
      0.01:(gPower'=NO_POWER)&(gState'=FAIL);
gState=FAIL -> 1.0:(gPower'=NO_POWER)&(gState'=FAIL);

Generator (Control flow commands)
(cf=Generator)&(gState=OK)->
      1.0:(cf'=Battery);
(cf=Generator)&(gState=FAIL)->
      0.9:(cf'=Battery) + 
      0.1:(cf'=Repair);

Repair (Data flow commands)
true ->
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Element

Data

Failure
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Data flow

Battery (Data flow commands)
(gPower=HAS_POWER) -> 
      1.0:(bPower'=HAS_POWER) & 
            (bLoad'=min(9,bLoad+1));
(gPower=NO_POWER)&(bLoad>0) -> 
      1.0:(bPower'=HAS_POWER) & 
            (bLoad'=bLoad-1);
(gPower=NO_POWER)&(bLoad=0) -> 
      1.0:(bPower'=NO_POWER) & 
            (bLoad'=0);
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Formal methods for 
error propagation analysis
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experiments



Challenges
How to generate training and testing data?
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Fault Injection Tool FIBlock for Simulink

The user can specify:

• Fault type: Stuck-at, Package drop, Bias/Offset, Bit flips, Time delay, Noise.

• Fault event: Failure probability, Mean Time to Failure, Failure Rate Distribution.

• Fault effect: Once, Constant time, Infinite time, Mean Time to Repair.

Augmented data = Normal data (real data) + Fault samples (from a database)



Challenges
How to generate training and testing data?
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Reinforcement Learning-based Fault Injection
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Challenges
Three levels of anomaly detection
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System-of-Systems-Level
• Attention switching
• Scaling
• Edge-Fog-Cloud

System-Level
• System analysis
• Dynamic switching access points
• Multivariate time series

Component-Level
• Selection, combination, tuning of DNNs
• Dynamic switching of DNNs
• Univariate time series
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