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Faults, errors, failures
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Faults, errors, failures
Examples of safety-critical systems

Medical Flexible Intelligent
exo-skeleton production line transportation
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Faults, errors, failures
Networked heterogenous components

Actuator
Sensor
Controller
Network

ema> )X,
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Faults, errors, failures
Examples of internal faults

. ' Computing

HW faults:
Bit-flip,
. . stuck-at

! Failure: (a) Sensor faults
. e.g. hazardous

. actuator command

Timing
errors

Signal

Time (s) Time (s)

. Sensor faults:
* Noise, drift,
' freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.

Freeze

Signal
0

A\ 4

Time (s)

Time (s)
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Faults, errors, failures
Examples of internal faults

. ' Computing

HW faults:
_________ . Bit-flip,
: . KN . stuck-at

¢ Failure:
. e.g. hazardous
. actuator command

Timing
errors

. (b) Computing hardware faults

Bit flip

O/1]0/1[1]1/0]1

. Sensor faults:
+ Noise, drift (c) Network faults
freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.

Signal
Signal

Time (s) Time (s)

University of Stuttgart



Faults, errors, failures
Examples of external faults

Failure:
. Computing

. e.g. hazardous
» actuator command
HW faults: !

Bit-flip,
stuck-at

Timing
errors

. Sensor faults:
* Noise, drift,
' freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.
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(d) Hacker attacks

(e) Environmental conditions

https://innovate.ieee.org/innovation-spotlight/vehicle-detection/
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Faults, errors, failures
System states

Actuator
Sensor
Controller
Network

University of Stuttgart

Operation time
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Faults, errors, failures
System states

Nominal system operation states.

Actuator

Sensor
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Controller
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Network . .
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Operation time
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Faults, errors, failures
System errors

. ' Computing

HW faults:
Bit-flip,
R . stuck-at

Timing
errors

. Sensor faults:
* Noise, drift,
+ freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.

University of Stuttgart
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Fault — a defect in the system.
Fault activation results in error occurrence.
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Faults, errors, failures
Error propagation

Error — incorrect internal system state.
System is still functioning, possibly in degraded mode.
Error propagation — one error leads to another error.

. ' Computing

HW faults:
Bit-flip,
R . stuck-at

Timing
errors

. Sensor faults:
* Noise, drift,
' freeze, offset

-*" Network faults: "
Packet loss,
delay, jitter.

Operation time

University of Stuttgart 13



Faults, errors, failures
System failures

Failure:
. Computing

. e.g. hazardous

» actuator command
HW faults:
Bit-flip,

. stuck-at

Timing
errors

. Sensor faults:
: Noise, drift,
+ freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.
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An error can cause a failure.
Failure — incorrect delivered service, externally visible
deviation from system specification.

Operation time
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Faults, errors, failures
Error detection

_________________________________________ Error detection, failure prevention,

: ! Failure: mitigation and recovery.
' Computing

. e.g. hazardous

» actuator command
HW faults:
Bit-flip,

. stuck-at

Timing
errors

. Sensor faults:
: Noise, drift,
+ freeze, offset

.*" Network faults:
Packet loss,
delay, jitter.

[
Operation time
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Part 2

Anomalies
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Anomalies
What is an anomaly?

* An anomaly is an observation or a sequence of observations which deviates remarkably
from the general distribution of data.

* The set of the anomalies form a very small part of the dataset.
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Anomalies
Data types

- Time series is a series of data points indexed
in time order. :

* Temporal data include time-series, but also
data with timestamps of unequal interval.

. . . . . Example of temporal (time-series),
Univariate data takes only one dimension, multivariate. laballed data:

e.g., single sensor readings. | Noise

- Multivariate data contains multiple dimensions, iy | 1 (‘y ‘J f J& |
e.g., images or time-series of several sensors. .

Stuck-at

4 I M/ 1
- Labelled dataset: an annotation exists for each 1 M |

element, which determines if it is a normal or , o
anomalous. Lo ok
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Anomalies

Anomaly classification

Point anomaly

Three different types of anomalies exist.

- Point anomalies: If a point deviates
significantly from the rest of the data.

- Collective anomalies: Individual points
are not anomalous, but a sequence of
points are labelled as an anomaly.

- Contextual anomalies: Some points
can be normal in a certain context,
while detected as anomaly in another
context.

University of Stuttgart

Contextual anomaly

Collective anomaly

7
|

https://arxiv.org/abs/2204.01637
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Anomalies
Classification of detection methods

Range-check

Monotonicity-check

‘ Rule-based methods

Expert knowledge [C

Parity space-based methods

25

1A| Parameter estimation-based methods (e.g. Recursive Least Squares)

Model-based methods J\/‘

State estimation-based (e.g. Kalman filters, Luenberger observers)

Data-driven methods ]@

University of Stuttgart
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Error |
weighting |

https://www.researchgate.net/figure/Full-order-Luenberger-Observer_fig2_7625084




Anomalies
Classification of detection methods

Expert knowledge (®

Model-based methods ]G)

Multivariate CUmulated SUMs control chart (MCUSUM)

Statistical process control Of

| Multivariate Exponential Weighted Moving Average (MEWMA)

Vector Autoregressive (VAR) method

Autoregressive Moving Average Model (ARIMA)

Prediction methods C

Statistical methods O

Prediction Confidence Interval (PCI)
Simple/Double/Triple Exponential Smoothing (SES, DES, TES)

Principal Component Analysis (PCA)

Decomposition methods O[ Singular Spectrum Analysis (SSA)

Data-driven methods ]@

l Independent Component Analysis (ICA) 00

Simillarity-search (e.g. Matrix-Profile (MP)) os

Machine Learning methods C ot

K-Means Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Local Outlier Factor (LOF)

Deep learning methods ® o

University of Stuttgart

Isolation Forest (IF)

One-Class Support Vector Machines (OC-SVM)

Extreme Gradient boosting (XGBoost)

https://community.rstudio.com/t/forecasting-regression-model-with-arima-errors/75951
https://commons.wikimedia.org/wiki/File:DBSCAN-Gaussian-data.svg



Anomalies

Classification of detection methods TRy

Input  Hidden = Hidden Output | Conv1 |

layer layer 1 layern layer 7 ] 7 7 ™ I

| MaxPooling | — 1
I sk
X 8
Expert knowledge [® | Conv2 | o 5

!
MaxPooling
Model-based methods ]@ -
[ Dense ] |

Statistical methods ® \f

Machine Learning methods ®

Multiple Layer Perceptron (MLP)

Long Short Term Memory (LSTM) network

Recurrent Neural Networks (RNN) O
L Gated Recurrent Unit (GRU)

Data-driven methods ]O
Residual Neural Network (ResNet)

Convolutional Neural Networks (CNN) O{ WaveNet

‘ Deep Unsupervised Anomaly Detection (DeepAnT)

Deep learning methods O MLP-UAE (univariate)

MLP-MAE (multivariate)
T . T T Auto-Encoders (AE) C
i LSTM-AE
el N @ | Gy Variational AE (VAE)
Gn>
Transformer for Anomaly Detection in multivariate time series data (TranAD)
LS;:‘A <y ® LS;'IW Transformers O,

1 41 —{ Transformers with Association Discrepancy
i o] [

hey he Multivariate Anomaly Detection with GAN (MAD-GAN)

Generative Adversarial Networks O{
| Time series Anomaly Detector using GAN (TadGAN)

X
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Anomalies
Approaches to DL-based anomaly detection

1) Classification (MLP, CNN):

» Supervised learning, good performance.

* Requires sufficient labeled erroneous instances.
2) Prediction (LSTM):

* Unsupervised learning, labels are not required.
* On-line localization, and mitigation.

3) Reconstruction (AE):

« Based on encoder-decoder architecture.

* Not so efficient.

University of Stuttgart
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Anomalies
Perfromance of detection methods

Paper Year | Conclusion

Anomaly Detection in Univariate Time-series: A
Survey on the State-of-the-Art

Current time series anomaly detection
benchmarks are flawed and are creating the
illusion of progress.

An Evaluation of Anomaly Detection and
Diagnosis in Multivariate Time Series

Do Deep Neural Networks Contribute to
Multivariate Time Series Anomaly Detection?

Anomaly Detection in Time Series: A
Comprehensive Evaluation

University of Stuttgart

2020

2021

2021

2022

2022

- DL are flawed (statistical methods
are better than ML and DL)

- DL are flawed (95% published results
can'‘t be trusted, AD can be solved
good enough with older methods)

- UAE is best (fancy DNN design might
not work as they promised, trivial NN
might be better than them)

+ No fit for all solution (positive
evidence that DL do prove real
advantage in some circumstances)

+ No fit to all solution (there is no clear
winner, no one-size-fits-all solution)

24



Anomalies
Perfromance of detection methods

A :
Deep learning Deep learning
[} q .
c Machine learning Machine learning
£ -
S Statistical approaches Statistical
o Expert knowledge JElingg
Expert
> knowledge

Data

Deep Learning: e.g. LSTM, Transformer, Autoencoder.
Machine Learning: K-Means, DBSCAN, Isolation Forest.
Statistical Approaches: ARIMA-Model, SES/DES/TES.

Expert knowledge: e.g. rules, range-check.

University of Stuttgart https://blog.tensorflow.org/2018/10/industrial-ai-bhges-physics-based.html

Unknown
unknowns

Known
unknowns

Known
knowns
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Kraken
Deep-learning based anomaly detector

Deep learning based

autonomous K
Failure:
! » . e.g. hazardous
. Computing actuator command

error
detector
HW faults:
Bit-flip, Timing

. stuck-at errors

. Sensor faults:
+ Noise, drift,
¢ freeze, offset

A Actuator
v Sensor

: [E] Controller
e ‘ Network

: Access
teeeeians ’ &/\point

.*" Network faults:
Packet loss,
delay, jitter.

University of Stuttgart
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Kraken
Deep-learning based anomaly detector

Input Hidden = Hidden Output
layer layer 1 layern layer

1) Muti-Layer Perceptron (MLP)

+ Low performance for time series.

2) Recurrent Neural Network (RNN)

@ Unfold

+ Has memory to process sequences of inputs. w w w w

y P g P V [::> 7[ hea ]—V»[ e ]—V»[ hest ]—v»

« Can learn temporal dynamic behavior. é é é é

 Fail to capture the context as time steps increase i el i
(vanishing gradient problem). . SIS S— | iy -,

LSTM X X LSTM
3) Long Short Term Memory (LSTM) cell E’L Ll cel
- Designed to avoid the vanishing gradient problem. ) - T

University of Stuttgart 28



Kraken

Deep-learning based anomaly detector

Workflow

LSTM

hyperparameters

Error-free signal —>| Preprocessin '—»i Trainin
(Training data) P 9 9

)

Trained LSTM

ACtl.JaI signal Preprocessing Prediction
with errors

(Test data)

Error labels ——

'

Detection

Anomaly indices and scores i

University of Stuttgart

>[ Evaluation

)—> Precision and recall
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Kraken

Deep-learning based anomaly detector

Workflow

LSTM

hyperparameters

Error-free signal —>| Preprocessin |—>| Trainin
(Training data) P 9 9

)

Trained LSTM

Actgal signal Preprocessing Prediction
with errors

(Test data)

Error labels ——

'

Detection

Anomaly indices and scores ¢

University of Stuttgart

>[ Evaluation

J—> Precision and recall
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Kraken
Deep-learning based anomaly detector

Stacked LSTM Architecture:

- Layers: two consecutive hidden LSTM layers fully connected (80 units)

* Look-back: 50 steps.

* Look-ahead: 1 steps.

* Dropout: 0.3

Training-parameters:

 Batch size: 70

» Optimizer: Adam

« Epochs: 35 epochs with early stopping.

University of Stuttgart
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Kraken

Deep-learning based anomaly detector

Workflow

LSTM

hyperparameters

Error-free signal —>| Preprocessin |—>| Trainin
(Training data) P 9 9

)

Trained LSTM

Actgal signal Preprocessing Prediction
with errors

(Test data)

Error labels ——

'

Detection

Anomaly indices and scores ¢

University of Stuttgart

>[ Evaluation

J—> Precision and recall

32



Kraken
Deep-learning based anomaly detector

Prediction:
* The LSTM network predicts the next value (lookahead q = 1)

* based on the previous 50 time steps (lookback p = 50).

; i "
i I — residi
W - !
() ‘ , ! :
= p=50 ! !
1 !
S |
1 1
, i
; i
time

University of Stuttgart
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Kraken
Deep-learning based anomaly detector

Workflow

LSTM
hyperparameters

Error-free signal —>| Preprocessin |—>| Trainin j
(Training data) P 9 9

Trained LSTM

Actual signal P . Predicti
with errors reprocessing rediction Method1: Gaussian distribution
(Test data) ¢ based detection

Error labels —— Method2: dynamic threshold based

Dl detection

Anomaly indices and scores L

>[ Evaluation J—> Precision and recall
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Precision
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N

0.0

Kraken
Deep-learning based anomaly detector

Gaussian distribution based threshold

Residual

Dynamic threshold

Residual
(RIS 2
016 018
016
014
0
02

0.02

N (O 7 v P WS

200 300 400 500 600 700
¥

° better | ?0.6 / 06

Xog 0.4

/( 0.2 // 02
7l

Precision

0.0
01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0 0.0z ”-JEU-“ - U-D'tu.clj ue UuI Lo
Error magnitude Error magnitude fror magnituae
University of Stuttgart

I * better !

T 02 03 04 05 06 07 08 09 10

Error magnitude
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Kraken

Deep-learning based anomaly detector

Workflow

LSTM

hyperparameters

Error-free signal —>| Preprocessin |—>| Trainin
(Training data) P 9 9

)

Trained LSTM

Actgal signal Preprocessing Prediction
with errors

(Test data)

Error labels ——

'

Detection

Anomaly indices and scores ¢

University of Stuttgart

>[ Evaluation

J—> Precision and recall
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Kraken

Deep-learning based anomaly detector

Evaluation

El:sensor spike E2:sensor noise E3:packet loss E4:sensor offset

E5:network delay

—— Time-series data 1
100 { — Prediction
50
o

n .

—— Time-series data 1
100 { — Mitigated data

—L

E6:bitflip E7:packet loss

80| — Time-series data 2
| — Mitigated data
w] =V
2
3
00 00

Time steps

University of Stuttgart

TP
TP+ FP’

Precision =

Fz=(1+p

AeheceR

TP
TP+ FN

Precision - Recall

(82 - Precision) + Recall

relevant elements

false negatives

true negatives

retrieved elements

How many retrieved
items are relevant?

How many relevant
items are retrieved?

Precision = Recall= ——

F1: recall and precision equally important
F2: recall twice as important as precision
F0.5: recall half as important as the precision

https://en.wikipedia.org/wiki/F-score, TadGAN: Time Series Anomaly Detection using GAN
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Kraken
Other use cases

University of Stuttgart

Robotic
Colabartive
Manipulators

Robotic Exo-
skeleton

Autonomous
Vehicle System

Unmanned
Aerial Vehicle

Simulink Model Description

Emulation of manufacturing process with two manipulators sharing a tool.

® One robot takes the tool from tool holder A with randomized
waypoints and puts it to tool holder 8.

* Another robot takes the tool from tool holder B and put it back to tool
holder A

Supportive exoskeleton system that assists elderly users in day-to-day
activities.

Lower-limb 6-DOF supportive exoskeleton system.

The high-level controller is realized on a single-board computer
connected to the joint controllers via the CAN bus using CANopen
protocol.

The system along with the Simulink model is courtesy of KIT, Dr. lishat
Mamaev.

Our simulation allows users to develop automated driving algorithms and
assess their safety and performance. With the help of this, the safety of the
implemented component or algorithm can be measured on both the
vehicle level and the traffic level. We collected data from a scenario built
under a simple scenario:

* A front vehicle capable of sharing its position and speed
* While another vehicle following it using adaptive cruise control system

Emulation of parrot minidrone with four main components:

* Flight Control System
* Multicopter Model
® Sensor Model

® Environment Model

Collected Data

Time series data
Collected from the
sensors of the joints
Saved as CSV files

Time series data
Representing the
signals collected
from the joint
Saved as CSV files

Time series data
Representing the
speed and
accleration of the
vehicles
Transformed through
wavelet filter into
figures

Saved as figures in
jpg form

Time series data
Representing the
acceleration and
gyroscope of the
UAV

Saved as CSV files

Detector

MLP

Auto Encoder
Stacked GRU
Stacked

LST™M
Transformer

Stacked GRU
Stacked
LSTM

Random
Forest
Gradient
Boosting
CNN

Random
Forest
Bidirectional
LSTM
CNN-LSTM

Publications

KrakenBox: Deep Learning based Error
Detector for Industrial Cyber-Physical
Systems (IMECE2021)

Anomaly Detection for Cyber Physical
Systems using Transformers (IMECE2021)
Model-Based Error Detection for Industrial
Automation Systems Using LSTM Networks
(IMBSA2020)

Deep Learning-basierter Fehlerdetektor fur
industrielle Cyber-Physische Systeme
(Industrie 4.0 Management)

On-line error detection and mitigation for
time-series data of cyber-physical systems
using deep learning based methods
(EDCC2019)

Deep Learning-based Error Mitigation for
Assistive Exoskeleton with Computational-
Resource-Limited Platform and Edge
Tensor Processing Unit (IMECE2021)

* Model-based Fault Injection Experiments
for the Safety Analysis of Exoskeleton
System (IMECE2020)

Tool Paper: Time Series Anomaly Detection
Platform for MATLAB Simulink
(IMBSA2022,

® |IMU Sensor Faults Detection for UAV using
Machine Learning (ESREL2022)
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Kraken
Other use cases

Table 7. Performance of Machine Learning and Deep Learning models based on Test Dataset for Ac-

celerometer
Architecture Test Accu- | F1 Score Precision Recall
racy
Random Forest w/o Feature Engg.(baseline | 89.0% 87.0% 88.0% 87.0%
model)
Random Forest with Feature Engg. 98% 98% 97% 99%
Hybrid CNN-LSTM w/o Feature Engg. 99.22% 99.0% 99.0% 99.0%
BiLSTM w/o Feature Engg. 95% 94 % 95% 94%
Table 8. Performance of Machine Learning and Deep Learning models based on Test Dataset for Gyroscope
Architecture Test Accu- | F1 Score Precision Recall
racy
Random Forest w/o Feature Engg. (baseline | 82.0% 82.0% 82.0% 81.0%
model)
Random Forest with Feature Engg. 97 % 96 % 96 % 97 %
Hybrid CNN-LSTM w/o Feature Engg. 90.0% 90.0% 91.0% 90.0%
Hybrid CNN-LSTM with Feature Engg. 93.0% 92.0% 92.0% 93.0%
BiLSTM w/o Feature Engg. 84.0% 83.0% 82.0% 83.0%

.
Unmanned .
Aerial Vehicle .

.

University of Stuttgart

Flight Control System
Multicopter Model
Sensor Model
Environment Model

Emulation of parrot minidrone with four main components:

® Time series data

* Representing the
acceleration and
gyroscope of the
VAV

® Saved as CSV files

Fig. 13.

.

Tue labels

Fig. 12. Confusion Matrix of Hybrid CNN-LSTM

Confusion Matri
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ix

2 - 2000
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model based on Test Dataset for Accelerometer.

Tue labels

Random
Forest
Bidirectional
LSTM
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Confusion Matrix

&
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ection for UAV using

SREL2022)

Confusion Matrix of Random Forest model
based on Test Dataset for Gyroscope.
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Kraken

Time Series Anomaly Detection for Simulink

Input:

Time Series Data From
Simulation
Real World

MATLAB
SIMULINK

Data Preparation
(®) Custom Dataset
Folder:

@

Select

Dataset

=

@

Configure
DNN

Performance

MATLAB App Designer
Deep Learning toolbox
Simulink API

Browse...

(O Available Datasets

Load Data |

‘Step Size (s)
BECN
o

(DSelect Dataset and Preprocessing

University of Stuttgart

Network Options

Network specificty | LSTM v Use val data

80

35 Epochs

1| Minibatch size

@ Configure DNN

Restart

Output:

Show Detection Result

Generate Fault Detection Blocks

Faulty data selection

Fault type

Offset
Noise
Stuck value

35

7 Fault duration 12s

Scenario 1
2

Save net to 3
workspace

Visualize data

Predict data

Online detection
simulation

(3 Examine Detection

Performance

Features:

* Multiple DNN architectures

» Customizable hyper-parameters
» Several detection approaches

* Several evaluation methods

* Multiple fault types

« Multiple fault injection methods

“Tool Paper: Time Series Anomaly Detection Platform
for MATLAB Simulink”, Accepted to IMBSA 2022

Open source:
https://github.com/mbsa-tud/tsad_platform
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Part 4

Challenges




Challenges
How to select a suitable anomaly detector?

Context-aware anomaly detector:

» Search for optimal detection approach, deep
learning architecture, hyperparameters;

« Combination (Ensemble) of several detectors;

« Dynamic switch of the detectors.

Simple features Complex features
| 1 Recommended Time-series data Spike
| Freeze NN architectures, from APs, P!
Drift hyperparameters, ground truth, AP1 _,_\_d_,_\_ 40
l Spike and threshold expected faults, Driff Max J §
A 22 setting methods ‘ dependencies AP2 M 3 T Number of peaks APATTRA LS :
=% hamm A I R R v P
O... WaveNet |5 combine, AP3 —’_'-LFli 2 ' [
o, l g and tune reeze [\ || I:‘ Mban
> .. A I /N | 7
8 ERY *l._ Transformer ~ e — ] 7 [ ]
3 | Q s | | Median
2 ResNetO | . suitable \ 1
:o CNN- | DL-based error detector 10 Min
Autoencoder O | [e) >
1 - 5
Bad I e fe .8
0

Slow Processing Fast - ;g’?!%* 1234567 8 91011121314151617 18

University of Stuttgart 42



Challenges
How to select a suitable anomaly detector?

Context-aware anomaly detector:

* — Performance

|—> Simulation Data Peatures |, % —— Performance
| 2 — Performance

A

ydolo)

Data‘h Features

)

System Access point features:
analysis Expect fault types, dependenceis, ...

Classifier —— m_, Suitable detector

A\ 4

A
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Challenges
How to select a suitable access points?

Context-aware anomaly detector:

« System-level control flow, data flow, and
error propagation analysis

« Dynamic switch according to the attention
mechanism

ands) | | Generator (Data flow commands)
| gState=OK ->

| 0.02(gPowe
11 0.01:(gPower
| gState=FAIL ->

)_ POWER)&(gState'=OK) +
)_POWER)&(gState'=FAIL);

,,,,,,,,,,,,,,,,,,

University of Stuttgart

|| 097:(gPower=HAS_POWER)&(gState'=OK) +

'=min(9,bLoad+1));
R)&(bload>0) > |

wwwwwww

Scoped

Simulative fault injection
experiments
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Y
How to generate training and testing data? -

.—»ldt @» Id( /fdti

/
X(ag Ffiag Scope lag /_Fflag Scope2
FIBlock1 FiBlock2
Constant Scope3

Fault Injection Tool FIBlock for Simulink

The user can specify:
* Fault type: Stuck-at, Package drop, Bias/Offset, Bit flips, Time delay, Noise.
* Fault event: Failure probability, Mean Time to Failure, Failure Rate Distribution.

* Fault effect: Once, Constant time, Infinite time, Mean Time to Repair.

Augmented data = Normal data (real data) + Fault samples (from a database)

W A
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Challenges

How to generate training and testing data?

Reinforcement Learning-based Fault Injection

System State

System Model

University of Stuttgart

>

Agent 2

state reward action

S| R A

R (
_S.. | Environment |<—
= \
FIDGET
____________________________________ Fault Injection Environment
Reinforcement CPS Digital Twin with FIBlocks

Learning {Fault Type | i
> :
Actions i Fault Event ! 5
Agent !Fault Effect _ | ;
: I — :
: [ iAcces Points_ :
H b d H
Observations i ota E wa /Fea .
: «\(7 Scope2 !
RMSE !

(_,—4 ‘Z‘ nnnnn ScopeSI_E'_'

Reward Controller :
Function 5 signals Faulty run Golden run

Root Mean
Square Error

Time-series
training data

Labeles:

System-specific| * Fault Type
Labeled Data | * Fault activation timestep

!

46




Challenges
Three levels of anomaly detection

System-of-Systems-Level
« Attention switching

« Scaling

+ Edge-Fog-Cloud

System-Level

. System analysis

. Dynamic switching access points
. Multivariate time series

Actuator .

v Sensor
[c]
®

Controller
Network

Component-Level

. Selection, combination, tuning of DNNs
. Dynamic switching of DNNs

. Univariate time series
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