TABLE OF CONTENTS

Dedication	iii
Preface to the First Edition	xiii
Preface to the Second Edition	xv
Forewords	xvii
Acknowledgment	xix
Chapter 1 Introduction to Pipeline Systems	1
1.1 Introduction	1
1.2 Liquid Pipelines	1
1.2.1 Liquid Pipeline System	1
1.2.2 Liquid Pipelines and Pumping	3
1.3 Gas Pipelines	6
1.3.1 Gas Pipeline Systems	6
1.3.2 Gas Pipelines and Compression	8
1.4 Dependability of Pipeline Systems	9
1.4.1 Dependability	9
1.4.2 The Value of Dependability for Pipelines	12
1.4.3 Dependability for Pumping and Compression	12
References	14
Chapter 2 Liquid Pipeline Pumping System Design	17
2.1 Liquid Pipeline Design	17
2.1.1 Hydraulic Gradient	17
2.1.2 Pipe Size Selection	17
2.1.3 Pipeline System Head Curve	19
2.1.4 Pipeline System Curve Development Example	21
2.1.5 Pipeline Considerations for System Curves	22
2.2 Liquid Flow Equations	22
2.2.1 Laminar Flow	22
2.2.2 Colebrook_White Equation	26

2.2.2 Colebrook–White Equation	26
2.2.3 Hazen–Williams Equation	27
2.3 Number of Pumps and Pump Configurations	28
2.3.1 Number of Pumps	28
2.3.2 Pumps in Series	29
2.3.3 Pumps in Parallel	29

30

2.3.4 Pump Station Configuration

2.3.5 Piping for Minimum Flow Protection	32
2.3.6 Number of Units	34
2.3.7 Exercise	37
2.4 Pipeline Pressure	38
References	40

Chapte	r 3 Gas Pipeline Compression System Design	41
3.1	Gas Pipeline Design	41
	3.1.1 Hydrocarbons and Natural Gas	41
	3.1.2 Gas Compression Calculations	41
	3.1.3 Driver Power	45
	3.1.4 Principles of Gas Pipeline Hydraulics	45
3.2	Gas Flow Equations	46
	3.2.1 General Flow Properties	46
	3.2.2 Principles of Fluid Flow	49
	3.2.3 Thermal and Thermodynamic Effects	50
	3.2.4 Pipe-Related Parameters	51
	3.2.5 Friction Factor and Flow Regimes	52
	3.2.6 General Gas Flow Equations	54
	3.2.7 Generalized Isothermal Flow of Gas in Pipelines	56
	3.2.8 Industry-Used Flow Equations	57
	3.2.9 Examples	58
	3.2.10 Maximum (Sonic) Velocity of Compressible Fluids in Pipeline Systems	59
3.3	Pipeline Design and Optimization for Compression	61
	3.3.1 Optimization With Respect to Compression	61
	3.3.2 Pipeline Looping and Compression (Location and Spacing)	64
	3.3.3 Hydraulic Simulation	65
	3.3.4 Driver Power	68
	3.3.5 Cost of Compressor Operation	69
3.4	General Compressor Station Configuration	69
	3.4.1 Operating Considerations	69
	3.4.2 Types of Compression Equipment	70
	3.4.3 Parallel and Series Configuration	71
	3.4.4 Number of Units	73
	3.4.5 Case Study: NPV Comparison Between Immediate and Deferred	
	Unit Installation	74
	3.4.6 Standby Units	74
	3.4.7 Environmental Considerations	77
	3.4.8 Case Study: Comparison of Different Usage Scenarios for Pipeline Stations	77
	3.4.9 Compressor Requirements	81
	3.4.10 Driver Requirements	83
3.5	Station Layout and Facilities	84
	3.5.1 General	84
	3.5.2 Station Layout	84
	3.5.3 Station Piping Layout	84
	3.5.4 Scrubbers and Filters	86
	3.5.5 Gas Coolers	87
	3.5.6 Station and Unit Auxiliary Systems	88
	3.5.7 Station and Unit Control Systems	88

3.5.8 Buildings and Weather Protection	90
3.5.9 Safety Systems and Environmental Controls	90
3.5.10 Codes and Standards	90
References	92

Chapter 4 Design and Operation of Pumps 95 4.1 Pumps for Liquid Pipeline Stations 95 4.2 Pump History 96 4.3 Centrifugal Pumps 100 4.3.1 Types of Centrifugal Pumps 100 4.3.2 Centrifugal Pump Design 102 4.3.3 Centrifugal Pump Mechanical Seals 105 4.3.4 Centrifugal Pump Station Piping Design 108 4.3.5 Centrifugal Pump Nozzle Loading 110 4.3.6 Pump Operational Hazards and Risk 114 4.4 Positive Displacement Pumps 115 4.4.1 Rotary Pumps 115 4.4.2 Reciprocating Pumps 118 4.4.3 Pulsation Dampeners 121 4.4.4 Other Pump Design Considerations 123 126 References

Chapter 5 Performance of Pumps	127
5.1 Pump and System Design Standards	127
5.2 System Head	128
5.3 American Petroleum Institute Gravity and SG Relationship	129
5.4 Performance of Centrifugal Pumps	133
5.4.1 Performance Curves	133
5.4.2 Centrifugal Pumps Coverage Chart	134
5.4.3 Impeller Selection	134
5.4.4 Pump Head-Flow and System Head Flow Curves	136
5.4.5 Centrifugal Impeller Design Theory	137
5.4.6 Specific Speed	140
5.4.7 Impeller Curve Characteristics	141
5.4.8 Affinity Laws	144
5.4.9 Pipeline-Pump Operational Control	144
5.4.10 Pump Sizing and Selection	146
5.4.11 Pump Power and Efficiency	146
5.4.12 Performance Modifications	146
5.5 Cavitation in Centrifugal Pumps	148
5.5.1 Cavitation	148
5.5.2 Net Positive Suction Head	153
5.5.3 Net Positive Suction Head Available	154
5.5.4 Net Positive Suction Head Required	156
5.5.5 Correcting for Inadequate Suction Conditions	156
5.5.6 NPSHA–NPHSR Criteria	157
5.6 Centrifugal Pumps and Viscous Liquids	157
5.7 Centrifugal Pump Limits	160
5.7.1 Minimum Flow	160

5.7.2 Temperature Rise	161
5.7.3 Re-Circulation in Centrifugal Pumps	161
5.8 Pump Surge in System Operation	163
5.9 Performance of Positive Displacement Pumps	164
5.9.1 Rotary Pump Performance Chart	164
5.9.2 Pump Power and Efficiency	165
5.9.3 Net Positive Suction Heads for Rotary Pumps	167
5.9.4 Rotary Pump Slips and Clearance	167
5.9.5 System Head Curves and Rotary Pump Curve	167
5.9.6 Reciprocating Pump Flow Characteristics	168
5.9.7 Reciprocating Pump Acceleration Head	169
5.9.8 Net Positive Pressures	170
5.9.9 Reciprocating Pump Selection	171
5.10 Measurement Units and Conversion Factors for Pumps	173
References	176

apter 6 Design and Operation of Compressors	177
6.1 Introduction to Pipeline Compressors	177
6.2 Compressor Types and Uses	177
6.2.1 Classification of Compressors	177
6.2.2 Reciprocating Compressors	177
6.2.3 Rotary Compressors	179
6.2.4 Centrifugal Compressors	180
6.3 Reciprocating Compressors	182
6.3.1 General Design	182
6.3.2 Running Gear	183
6.3.3 Frame and Cylinders	183
6.3.4 Capacity Control	188
6.3.5 Valves	188
6.3.6 Packings	190
6.3.7 Bearings and Lubrication Systems	190
6.3.8 Controls and Monitoring	192
6.3.9 Gas Cooling	193
6.3.10 Operation and Optimization	193
6.3.11 Design Standards	198
6.4 Centrifugal Compressors	198
6.4.1 General Design	198
6.4.2 Compressor Internals and Sealing	199
6.4.3 Bearings and Lubrication Systems	201
6.4.4 Sealing System	204
6.4.5 Controls and Monitoring	207
6.4.6 Physical Operation	211
6.4.7 Design Standards	215
6.5 Screw Compressors	216
6.5.1 Screw Compressor Design	216
6.5.2 Screw Compressor Operation	217
References	218

Chapter 7 Performance of Compressors	221
7.1 Introduction to Compressor Performance	221
7.2 Basic Aspects of Performance	221
7.2.1 General	221
7.2.2 Nomenclature	221
7.2.3 Gas Properties	221
7.2.4 Compression Behavior	224
7.2.5 Head	226
7.2.6 Efficiency	226
7.2.7 Flow	226
7.2.8 Power	227
7.3 Performance of Reciprocating Compressors	228
7.3.1 General	228
7.3.2 Flow	228
7.3.3 Power	230
7.3.4 Discharge Temperature	232
7.3.5 Performance Maps	232
7.3.6 Piston Speed	235
7.4 Performance of Centrifugal Compressors	236
7.4.1 General	236
7.4.2 Dynamic Performance Characteristics	236
7.4.3 Selection and Sizing	239
7.4.4 Performance Testing	241
7.5 System Characteristics	242
7.5.1 General	242
7.5.2 System Curves	243
7.5.3 Compressor Performance Comparison	245
7.5.4 Operating Limitations	247
7.5.5 Compressor Performance Adjustments	248
7.5.6 Operating Considerations	249
References	252

Chapter 8 Pump and Compressor Drivers	253
8.1 Introduction to Drivers	253
8.2 Gas Turbines	254
8.2.1 Types of Gas Turbines	254
8.2.2 Basic Design of a Gas Turbine	257
8.2.3 Design Standards	260
8.2.4 Performance Characteristics	261
8.2.5 Fuel System	263
8.2.6 Lubrication System	267
8.2.7 Waste Heat Recovery	268
8.3 Electric Motors	269
8.3.1 General	269
8.3.2 Types of Motors	269
8.3.3 Motor Design Considerations	270
8.3.4 Variable Speed Motors	273

8.3.5 Hermetic Compressors	275
8.3.6 Driver Economics	276
8.4 Internal Combustion Engines	278
8.4.1 General	278
8.4.2 Internal Combustion Engine Design	279
8.4.3 Separable Engine/Compressors	282
8.5 Couplings	282
8.5.1 Functions of Couplings	282
8.5.2 Coupling Selection	283
8.5.3 Gear Couplings	285
8.5.4 Flexible Couplings	285
8.5.5 Elastomeric Soft Couplings	286
8.5.6 Steel-Spring Soft Couplings	287
8.5.7 Coupling Standards	290
References	290

Chapter 9 Dynamic Behavior of Pumping Systems	293
9.1 Introduction	293
9.2 Unsteady Governing Equations and Solution Techniques	293
9.2.1 Governing Equation for Constant Area Pipes	293
9.2.2 Solution Techniques	295
9.3 Boundary Conditions	296
9.3.1 Flow Transients Across Other Elements	297
9.3.2 Flow Transients of an Accumulator	298
9.4 Dynamics Behaviour of Centrifugal Pumps	300
9.4.1 Homologous Relations	300
9.4.2 Full Pump Characteristics	301
9.4.3 Dynamic Equation	303
9.4.4 Pump and Motor Inertias	305
9.5 Water Hammer, Cavitation, and Column Separation	307
9.5.1 Water Hammer	307
9.6 Cavitation and Column Separation	308
9.6.1 Steam Condensation-Induced Water Hammer	310
9.7 Examples and Case Studies	311
9.7.1 Styrene Transfer System	311
9.7.2 Lube Oil System for a Large Process Gas Compressor	318
9.7.3 Pump Characteristics	320
9.7.4 Control Valves	321
9.7.5 First Problem	323
9.7.6 Second Problem	331
References	333

Chapter 10 Dynamics of Centrifugal Compression Systems	335
10.1 Introduction	335
10.2 Fundamentals of Dynamic Instabilities of Compression Systems	336
10.2.1 Simple Compression Systems	336
10.2.2 Complex Compression Systems	339
10.2.3 Control Dynamics	343

10.2.4 Solution Techniques	346
10.3 Emergency Shut Down	350
10.3.1 Effects of Compressor Performance Characteristics	353
10.3.2 Effects of Rotor Inertia	357
10.3.3 Example of Dynamic Instabilities in an Industrial Compression System	358
10.3.4 Concept of Inertia Number	365
10.4 Check Valve Dynamics	370
10.4.1 Dynamics of Swing Type Check Valves	372
10.4.2 Slamming Characteristics of Swing Check Valves	375
10.4.3 Effects of Counterbalance on Maximum Reverse Velocity	381
10.4.4 Dynamics of Piston Type Check Valves	382
10.4.5 Dynamics of Wafer Type Check Valves	383
10.4.6 Effects of Check Valves of Compression Recycle System	385
10.5 Relief Valve Dynamics	387
10.5.1 Dynamics of Pilot-Operated Relief Valves	390
10.5.2 Solution Technique	394
10.5.3 Example	397
10.5.4 Field Tests	402
10.6 Station and Gas Pipeline Blowdown	405
10.6.1 Volume Model	406
10.6.2 Pipe Model	409
10.6.3 Comparison Between Models	410
10.6.4 Non-Isothermal Blowdown	413
References	418

23
423
423
424
432
437
438
440
440
442
445
448
448
450
450
455
455
459
462
462
471
472
•••••••••••••••••

11.9 Case Study Examples	474
11.9.1 Case Study #1: Single-Source Pulsation	475
11.9.2 Case Study #2: Multiple Source Pulsation	476
11.9.3 Case Study #3: Pulsation Generated by a Reciprocating Compressor	478
11.9.4 Case Study #4: Pulsation Generated by Plunger Pumps	482
References	486

Chapter 12 Mechanical Analysis	489
12.1 Introduction To Mechanical Analysis	489
12.2 Basic Aspects Of Vibration	489
12.2.1 General	489
12.2.2 Mechanical Natural Frequency and Resonance	491
12.3 Mechanical Analysis of Rotating Equipment	493
12.3.1 General	493
12.3.2 Lateral Rotordynamics	493
12.3.3 Stability	497
12.3.4 Torsional Rotordynamics	498
12.3.5 Specific Machinery Considerations for Rotordynamics	507
12.3.6 Balancing	517
12.4 Mechanical Analysis of Piping Systems	520
12.4.1 Excitation Mechanisms	520
12.4.2 Vibration and Stress	520
12.4.3 Unbalanced Forces	522
12.4.4 Small-Bore Attachments	524
12.4.5 Thermal Analysis	527
12.4.6 Centrifugal Compressors	527
References	531

Chapter 13 Environmental Issues Related to Compressor and Pump Stations	533
13.1 Introduction	533
13.2 Compressor and Pump Station Noise	533
13.2.1 Noise Level Parameters	534
13.2.2 Noise Criteria Limits	536
13.2.3 Predictions of Noise Level Form Compressor Stations	540
13.3 Noise Survey at Compressor and Pump Stations	548
13.3.1 Noise Mapping Methodology	549
13.3.2 Example Application on a Compressor Station	550
13.4 NOx Emissions from Gas Turbines	552
13.4.1 AP-42 Emission Factors	554
13.4.2 CEM Measurements	554
13.4.3 Neural Network Based PEM Models	556
13.4.4 PEM Implementation	559
13.5 Innovations in Capturing Vent Gas from Dry Gas Seals	560
13.5.1 Dry-Gas Seal Leakage Rates	565
13.5.2 Primary Challenges of Supersonic Ejectors	566
13.5.3 Description of the Two Stages of the Ejector	566
13.5.4 Performance of the Integrated Two-Stage Supersonic Ejector	569
13.5.5 Supersonic Ejector in Operation	572
References	575